1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
// Copyright 2015 Big Switch Networks, Inc // (Algorithms for uBPF syscalls, originally in C) // Copyright 2016 6WIND S.A. <[email protected]> // (Translation to Rust, other syscalls) // // Licensed under the Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0> or // the MIT license <http://opensource.org/licenses/MIT>, at your option. This file may not be // copied, modified, or distributed except according to those terms. //! This module implements some built-in syscalls that can be called from within an eBPF program. //! //! These syscalls may originate from several places: //! //! * Some of them mimic the syscalls available in the Linux kernel. //! * Some of them were proposed as example syscalls in uBPF and they were adapted here. //! * Other syscalls may be specific to rbpf. //! //! The prototype for syscalls is always the same: five `u64` as arguments, and a `u64` as a return //! value. Hence some syscalls have unused arguments, or return a 0 value in all cases, in order to //! respect this convention. extern crate libc; use crate::{ error::EbpfError, memory_region::{AccessType, MemoryMapping}, question_mark, user_error::UserError, vm::SyscallObject, }; use std::u64; /// Return type of syscalls pub type Result = std::result::Result<u64, EbpfError<UserError>>; // syscalls associated to kernel syscalls // See also linux/include/uapi/linux/bpf.h in Linux kernel sources. // bpf_ktime_getns() /// Index of syscall `bpf_ktime_getns()`, equivalent to `bpf_time_getns()`, in Linux kernel, see /// <https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/bpf.h>. pub const BPF_KTIME_GETNS_IDX: u32 = 5; /// Get monotonic time (since boot time) in nanoseconds. All arguments are unused. /// /// # Examples /// /// ``` /// use solana_rbpf::syscalls::{BpfTimeGetNs, Result}; /// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping}; /// use solana_rbpf::vm::{Config, SyscallObject}; /// /// let mut result: Result = Ok(0); /// let memory_mapping = [MemoryRegion::default()]; /// BpfTimeGetNs::call(&mut BpfTimeGetNs {}, 0, 0, 0, 0, 0, &MemoryMapping::new(memory_mapping.to_vec(), &Config::default()), &mut result); /// let t = result.unwrap(); /// let d = t / 10u64.pow(9) / 60 / 60 / 24; /// let h = (t / 10u64.pow(9) / 60 / 60) % 24; /// let m = (t / 10u64.pow(9) / 60 ) % 60; /// let s = (t / 10u64.pow(9)) % 60; /// let ns = t % 10u64.pow(9); /// println!("Uptime: {:#x} == {} days {}:{}:{}, {} ns", t, d, h, m, s, ns); /// ``` pub struct BpfTimeGetNs {} impl SyscallObject<UserError> for BpfTimeGetNs { fn call( &mut self, _arg1: u64, _arg2: u64, _arg3: u64, _arg4: u64, _arg5: u64, _memory_mapping: &MemoryMapping, result: &mut Result, ) { *result = Result::Ok(time::precise_time_ns()); } } // bpf_trace_printk() /// Index of syscall `bpf_trace_printk()`, equivalent to `bpf_trace_printf`, in Linux kernel, see /// <https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/bpf.h>. pub const BPF_TRACE_PRINTK_IDX: u32 = 6; /// Prints its **last three** arguments to standard output. The **first two** arguments are /// **unused**. Returns the number of bytes written. /// /// By ignoring the first two arguments, it creates a syscall that will have a behavior similar to /// the one of the equivalent syscall `bpf_trace_printk()` from Linux kernel. /// /// # Examples /// /// ``` /// use solana_rbpf::syscalls::{BpfTracePrintf, Result}; /// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping}; /// use solana_rbpf::vm::{Config, SyscallObject}; /// /// let mut result: Result = Ok(0); /// let memory_mapping = [MemoryRegion::default()]; /// BpfTracePrintf::call(&mut BpfTracePrintf {}, 0, 0, 1, 15, 32, &MemoryMapping::new(memory_mapping.to_vec(), &Config::default()), &mut result); /// assert_eq!(result.unwrap() as usize, "BpfTracePrintf: 0x1, 0xf, 0x20\n".len()); /// ``` /// /// This will print `BpfTracePrintf: 0x1, 0xf, 0x20`. /// /// The eBPF code needed to perform the call in this example would be nearly identical to the code /// obtained by compiling the following code from C to eBPF with clang: /// /// ```c /// #include <linux/bpf.h> /// #include "path/to/linux/samples/bpf/bpf_syscalls.h" /// /// int main(struct __sk_buff *skb) /// { /// // Only %d %u %x %ld %lu %lx %lld %llu %llx %p %s conversion specifiers allowed. /// // See <https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/kernel/trace/bpf_trace.c>. /// char *fmt = "bpf_trace_printk %llx, %llx, %llx\n"; /// return bpf_trace_printk(fmt, sizeof(fmt), 1, 15, 32); /// } /// ``` /// /// This would equally print the three numbers in `/sys/kernel/debug/tracing` file each time the /// program is run. pub struct BpfTracePrintf {} impl SyscallObject<UserError> for BpfTracePrintf { fn call( &mut self, _arg1: u64, _arg2: u64, arg3: u64, arg4: u64, arg5: u64, _memory_mapping: &MemoryMapping, result: &mut Result, ) { println!("BpfTracePrintf: {:#x}, {:#x}, {:#x}", arg3, arg4, arg5); let size_arg = |x| { if x == 0 { 1 } else { (x as f64).log(16.0).floor() as u64 + 1 } }; *result = Result::Ok( "BpfTracePrintf: 0x, 0x, 0x\n".len() as u64 + size_arg(arg3) + size_arg(arg4) + size_arg(arg5), ); } } // syscalls coming from uBPF <https://github.com/iovisor/ubpf/blob/master/vm/test.c> /// The idea is to assemble five bytes into a single `u64`. For compatibility with the syscalls API, /// each argument must be a `u64`. /// /// # Examples /// /// ``` /// use solana_rbpf::syscalls::{BpfGatherBytes, Result}; /// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping}; /// use solana_rbpf::vm::{Config, SyscallObject}; /// /// let mut result: Result = Ok(0); /// let memory_mapping = [MemoryRegion::default()]; /// BpfGatherBytes::call(&mut BpfGatherBytes {}, 0x11, 0x22, 0x33, 0x44, 0x55, &MemoryMapping::new(memory_mapping.to_vec(), &Config::default()), &mut result); /// assert_eq!(result.unwrap(), 0x1122334455); /// ``` pub struct BpfGatherBytes {} impl SyscallObject<UserError> for BpfGatherBytes { fn call( &mut self, arg1: u64, arg2: u64, arg3: u64, arg4: u64, arg5: u64, _memory_mapping: &MemoryMapping, result: &mut Result, ) { *result = Result::Ok( arg1.wrapping_shl(32) | arg2.wrapping_shl(24) | arg3.wrapping_shl(16) | arg4.wrapping_shl(8) | arg5, ); } } /// Same as `void *memfrob(void *s, size_t n);` in `string.h` in C. See the GNU manual page (in /// section 3) for `memfrob`. The memory is directly modified, and the syscall returns 0 in all /// cases. Arguments 3 to 5 are unused. /// /// # Examples /// /// ``` /// use solana_rbpf::syscalls::{BpfMemFrob, Result}; /// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping}; /// use solana_rbpf::vm::{Config, SyscallObject}; /// /// let val = vec![0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x22, 0x33]; /// let val_va = 0x1000; /// let memory_mapping = [MemoryRegion::new_from_slice(&val, val_va, 0, true)]; /// /// let mut result: Result = Ok(0); /// BpfMemFrob::call(&mut BpfMemFrob {}, val_va, 8, 0, 0, 0, &MemoryMapping::new(memory_mapping.to_vec(), &Config::default()), &mut result); /// assert_eq!(val, vec![0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x3b, 0x08, 0x19]); /// BpfMemFrob::call(&mut BpfMemFrob {}, val_va, 8, 0, 0, 0, &MemoryMapping::new(memory_mapping.to_vec(), &Config::default()), &mut result); /// assert_eq!(val, vec![0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x22, 0x33]); /// ``` pub struct BpfMemFrob {} impl SyscallObject<UserError> for BpfMemFrob { fn call( &mut self, vm_addr: u64, len: u64, _arg3: u64, _arg4: u64, _arg5: u64, memory_mapping: &MemoryMapping, result: &mut Result, ) { let host_addr = question_mark!(memory_mapping.map(AccessType::Store, vm_addr, len), result); for i in 0..len { unsafe { let p = (host_addr + i) as *mut u8; *p ^= 0b101010; } } *result = Result::Ok(0); } } // TODO: Try again when asm!() is available in stable Rust. // #![feature(asm)] // #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] // #[allow(unused_variables)] // pub fn BpfMemFrob (ptr: u64, len: u64, arg3: u64, arg4: u64, arg5: u64) -> Result<u64, Error> { // unsafe { // asm!( // "mov $0xf0, %rax" // ::: "mov $0xf1, %rcx" // ::: "mov $0xf2, %rdx" // ::: "mov $0xf3, %rsi" // ::: "mov $0xf4, %rdi" // ::: "mov $0xf5, %r8" // ::: "mov $0xf6, %r9" // ::: "mov $0xf7, %r10" // ::: "mov $0xf8, %r11" // ); // } // 0 // } /// Compute and return the square root of argument 1, cast as a float. Arguments 2 to 5 are /// unused. /// /// # Examples /// /// ``` /// use solana_rbpf::syscalls::{BpfSqrtI, Result}; /// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping}; /// use solana_rbpf::vm::{Config, SyscallObject}; /// /// let mut result: Result = Ok(0); /// let memory_mapping = [MemoryRegion::default()]; /// BpfSqrtI::call(&mut BpfSqrtI {}, 9, 0, 0, 0, 0, &MemoryMapping::new(memory_mapping.to_vec(), &Config::default()), &mut result); /// assert_eq!(result.unwrap(), 3); /// ``` pub struct BpfSqrtI {} impl SyscallObject<UserError> for BpfSqrtI { fn call( &mut self, arg1: u64, _arg2: u64, _arg3: u64, _arg4: u64, _arg5: u64, _memory_mapping: &MemoryMapping, result: &mut Result, ) { *result = Result::Ok((arg1 as f64).sqrt() as u64); } } /// C-like `strcmp`, return 0 if the strings are equal, and a non-null value otherwise. /// /// # Examples /// /// ``` /// use solana_rbpf::syscalls::{BpfStrCmp, Result}; /// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping}; /// use solana_rbpf::vm::{Config, SyscallObject}; /// /// let foo = "This is a string."; /// let bar = "This is another sting."; /// let va_foo = 0x1000; /// let va_bar = 0x2000; /// let mut result: Result = Ok(0); /// let memory_mapping = [MemoryRegion::new_from_slice(foo.as_bytes(), va_foo, 0, false)]; /// BpfStrCmp::call(&mut BpfStrCmp {}, va_foo, va_foo, 0, 0, 0, &MemoryMapping::new(memory_mapping.to_vec(), &Config::default()), &mut result); /// assert!(result.unwrap() == 0); /// let mut result: Result = Ok(0); /// let memory_mapping = [MemoryRegion::new_from_slice(foo.as_bytes(), va_foo, 0, false), MemoryRegion::new_from_slice(bar.as_bytes(), va_bar, 0, false)]; /// BpfStrCmp::call(&mut BpfStrCmp {}, va_foo, va_bar, 0, 0, 0, &MemoryMapping::new(memory_mapping.to_vec(), &Config::default()), &mut result); /// assert!(result.unwrap() != 0); /// ``` pub struct BpfStrCmp {} impl SyscallObject<UserError> for BpfStrCmp { fn call( &mut self, arg1: u64, arg2: u64, _arg3: u64, _arg4: u64, _arg5: u64, memory_mapping: &MemoryMapping, result: &mut Result, ) { // C-like strcmp, maybe shorter than converting the bytes to string and comparing? if arg1 == 0 || arg2 == 0 { *result = Result::Ok(u64::MAX); return; } let mut a = question_mark!(memory_mapping.map(AccessType::Load, arg1, 1), result); let mut b = question_mark!(memory_mapping.map(AccessType::Load, arg2, 1), result); unsafe { let mut a_val = *(a as *const u8); let mut b_val = *(b as *const u8); while a_val == b_val && a_val != 0 && b_val != 0 { a += 1; b += 1; a_val = *(a as *const u8); b_val = *(b as *const u8); } *result = if a_val >= b_val { Result::Ok((a_val - b_val) as u64) } else { Result::Ok((b_val - a_val) as u64) }; } } } // Some additional syscalls /// Returns a random u64 value comprised between `min` and `max` values (inclusive). Arguments 3 to /// 5 are unused. /// /// Relies on `rand()` function from libc, so `libc::srand()` should be called once before this /// syscall is used. /// /// # Examples /// /// ``` /// extern crate libc; /// extern crate solana_rbpf; /// extern crate time; /// /// use solana_rbpf::syscalls::{BpfRand, Result}; /// use solana_rbpf::memory_region::{MemoryRegion, MemoryMapping}; /// use solana_rbpf::vm::{Config, SyscallObject}; /// /// unsafe { /// libc::srand(time::precise_time_ns() as u32) /// } /// /// let mut result: Result = Ok(0); /// let memory_mapping = [MemoryRegion::default()]; /// BpfRand::call(&mut BpfRand {}, 3, 6, 0, 0, 0, &MemoryMapping::new(memory_mapping.to_vec(), &Config::default()), &mut result); /// let n = result.unwrap(); /// assert!(3 <= n && n <= 6); /// ``` pub struct BpfRand {} impl SyscallObject<UserError> for BpfRand { fn call( &mut self, min: u64, max: u64, _arg3: u64, _arg4: u64, _arg5: u64, _memory_mapping: &MemoryMapping, result: &mut Result, ) { let mut n = unsafe { (libc::rand() as u64).wrapping_shl(32) + libc::rand() as u64 }; if min < max { n = n % (max + 1 - min) + min; }; *result = Result::Ok(n); } }