Files
addr2line
adler
ahash
aho_corasick
ansi_term
anyhow
arc_swap
arrayref
arrayvec
ascii
assert_matches
async_stream
async_stream_impl
async_trait
atty
auto_enums
auto_enums_core
auto_enums_derive
backoff
backtrace
base32
base64
bincode
bip39
bitflags
bitvec
blake3
block_buffer
block_padding
borsh
borsh_derive
borsh_derive_internal
borsh_schema_derive_internal
bs58
bstr
bv
byte_slice_cast
byte_unit
bytecount
byteorder
bytes
bzip2
bzip2_sys
cargo_build_bpf
cargo_metadata
cargo_platform
cargo_test_bpf
cast
cc
cfg_if
chrono
chrono_humanize
clap
colored
combine
console
const_fn
constant_time_eq
core_affinity
cpufeatures
crc32fast
criterion_stats
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
crunchy
crypto_mac
csv
csv_core
ctrlc
curve25519_dalek
dashmap
derivative
derive_more
derive_utils
dialoguer
digest
dir_diff
dirs_next
dirs_sys_next
dlopen
dlopen_derive
doc_comment
dtoa
ed25519
ed25519_dalek
either
encoding_rs
enum_iterator
enum_iterator_derive
env_logger
ethabi
ethbloom
ethereum
ethereum_types
evm
evm_bridge
evm_core
evm_gasometer
evm_rpc
evm_runtime
evm_state
evm_utils
failure
failure_derive
fake_simd
fast_math
fd_lock
filetime
fixed_hash
flate2
fnv
foreign_types
foreign_types_shared
form_urlencoded
fs_extra
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
gag
generic_array
gethostname
getrandom
gimli
globset
goauth
goblin
h2
half
hash256_std_hasher
hash32
hash_db
hashbrown
heck
hex
hidapi
histogram
hmac
hmac_drbg
http
http_body
httparse
httpdate
humantime
hyper
hyper_rustls
hyper_tls
idna
ieee754
impl_codec
impl_rlp
impl_serde
indexed
indexmap
indicatif
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
input_buffer
instant
iovec
ipnet
itertools
itoa
jemalloc_ctl
jemalloc_sys
jemallocator
jobserver
jsonrpc_client_transports
jsonrpc_core
jsonrpc_core_client
jsonrpc_derive
jsonrpc_http_server
jsonrpc_pubsub
jsonrpc_server_utils
jsonrpc_ws_server
keccak
keccak_hash
keccak_hasher
kernel32
lazy_static
lazycell
libc
libloading
librocksdb_sys
linked_hash_map
lock_api
log
lru
matches
maybe_uninit
memchr
memmap2
memoffset
mime
mime_guess
miniz_oxide
mio
mio_extras
miow
native_tls
net2
nix
num_cpus
num_derive
num_enum
num_enum_derive
num_integer
num_traits
number_prefix
object
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ouroboros
ouroboros_macro
parity_scale_codec
parity_scale_codec_derive
parity_ws
parking_lot
parking_lot_core
paste
paste_impl
paw
paw_attributes
paw_raw
pbkdf2
percent_encoding
pest
pickledb
pin_project
pin_project_lite
pin_utils
plain
ppv_lite86
pretty_hex
primitive_types
proc_macro2
proc_macro_crate
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
prost
prost_derive
prost_types
quote
radium
rand
rand_chacha
rand_core
rand_isaac
raptorq
rayon
rayon_core
reed_solomon_erasure
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
retain_mut
ring
ripemd160
rlp
rlp_derive
rocksdb
rpassword
rustc_demangle
rustc_hash
rustc_hex
rustls
rustversion
ryu
same_file
scopeguard
scroll
scroll_derive
sct
secp256k1
secp256k1_sys
semver
semver_parser
serde
serde_bytes
serde_cbor
serde_derive
serde_json
serde_urlencoded
serde_yaml
sha1
sha2
sha3
signal_hook
signal_hook_registry
signature
simpl
simple_logger
slab
smallvec
smpl_jwt
snafu
snafu_derive
socket2
solana_account_decoder
solana_accounts_bench
solana_banking_bench
solana_banks_client
solana_banks_interface
solana_banks_server
solana_bench_exchange
solana_bench_streamer
solana_bench_tps
solana_bench_tps_evm
solana_bpf_loader_program
solana_budget_program
solana_clap_utils
solana_cli
solana_cli_config
solana_cli_output
solana_client
solana_config_program
solana_core
solana_crate_features
solana_csv_to_validator_infos
solana_dos
solana_download_utils
solana_evm_loader_program
solana_exchange_program
solana_failure_program
solana_faucet
solana_frozen_abi
solana_frozen_abi_macro
solana_genesis
solana_ip_address
solana_ip_address_server
solana_ledger
solana_ledger_tool
solana_ledger_udev
solana_local_cluster
solana_log_analyzer
solana_logger
solana_measure
solana_merkle_root_bench
solana_merkle_tree
solana_metrics
solana_net_shaper
solana_net_utils
solana_noop_program
solana_notifier
solana_ownable
solana_perf
solana_poh_bench
solana_program
solana_program_test
solana_ramp_tps
solana_rayon_threadlimit
solana_rbpf
solana_remote_wallet
solana_runtime
solana_sdk
solana_sdk_macro
solana_secp256k1_program
solana_sleep_program
solana_stake_accounts
solana_stake_monitor
solana_stake_o_matic
solana_stake_program
solana_storage_bigtable
solana_storage_proto
solana_store_tool
solana_streamer
solana_sys_tuner
solana_tokens
solana_transaction_status
solana_upload_perf
solana_version
solana_vest_program
solana_vote_program
solana_watchtower
spin
spl_associated_token_account
spl_memo
spl_token
stable_deref_trait
standback
static_assertions
strsim
structopt
structopt_derive
subtle
symlink
syn
synstructure
sysctl
tar
tarpc
tarpc_plugins
tempfile
termcolor
terminal_size
textwrap
thiserror
thiserror_impl
thread_scoped
time
time_macros
time_macros_impl
tiny_keccak
tinyvec
tinyvec_macros
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_codec
tokio_executor
tokio_fs
tokio_io
tokio_reactor
tokio_rustls
tokio_serde
tokio_sync
tokio_tcp
tokio_threadpool
tokio_tls
tokio_util
toml
tonic
tower
tower_balance
tower_buffer
tower_discover
tower_layer
tower_limit
tower_load
tower_load_shed
tower_make
tower_ready_cache
tower_retry
tower_service
tower_timeout
tower_util
tracing
tracing_attributes
tracing_core
tracing_futures
trees
triedb
triehash
try_lock
tungstenite
typenum
ucd_trie
uint
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
unix_socket
unreachable
untrusted
url
users
utf8
utf8_width
vec_map
velas
velas_account_program
velas_faucet
velas_genesis
velas_gossip
velas_install
velas_install_init
velas_keygen
velas_test_validator
velas_validator
void
walkdir
want
webpki
webpki_roots
websocket
websocket_base
winapi
ws2_32
xattr
yaml_rust
zeroize
zeroize_derive
zstd
zstd_safe
zstd_sys
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::mutex::MutexGuard;
use crate::raw_mutex::{RawMutex, TOKEN_HANDOFF, TOKEN_NORMAL};
use crate::{deadlock, util};
use core::{
    fmt, ptr,
    sync::atomic::{AtomicPtr, Ordering},
};
use instant::Instant;
use lock_api::RawMutex as RawMutex_;
use parking_lot_core::{self, ParkResult, RequeueOp, UnparkResult, DEFAULT_PARK_TOKEN};
use std::time::Duration;

/// A type indicating whether a timed wait on a condition variable returned
/// due to a time out or not.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct WaitTimeoutResult(bool);

impl WaitTimeoutResult {
    /// Returns whether the wait was known to have timed out.
    #[inline]
    pub fn timed_out(self) -> bool {
        self.0
    }
}

/// A Condition Variable
///
/// Condition variables represent the ability to block a thread such that it
/// consumes no CPU time while waiting for an event to occur. Condition
/// variables are typically associated with a boolean predicate (a condition)
/// and a mutex. The predicate is always verified inside of the mutex before
/// determining that thread must block.
///
/// Note that this module places one additional restriction over the system
/// condition variables: each condvar can be used with only one mutex at a
/// time. Any attempt to use multiple mutexes on the same condition variable
/// simultaneously will result in a runtime panic. However it is possible to
/// switch to a different mutex if there are no threads currently waiting on
/// the condition variable.
///
/// # Differences from the standard library `Condvar`
///
/// - No spurious wakeups: A wait will only return a non-timeout result if it
///   was woken up by `notify_one` or `notify_all`.
/// - `Condvar::notify_all` will only wake up a single thread, the rest are
///   requeued to wait for the `Mutex` to be unlocked by the thread that was
///   woken up.
/// - Only requires 1 word of space, whereas the standard library boxes the
///   `Condvar` due to platform limitations.
/// - Can be statically constructed (requires the `const_fn` nightly feature).
/// - Does not require any drop glue when dropped.
/// - Inline fast path for the uncontended case.
///
/// # Examples
///
/// ```
/// use parking_lot::{Mutex, Condvar};
/// use std::sync::Arc;
/// use std::thread;
///
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
/// let pair2 = pair.clone();
///
/// // Inside of our lock, spawn a new thread, and then wait for it to start
/// thread::spawn(move|| {
///     let &(ref lock, ref cvar) = &*pair2;
///     let mut started = lock.lock();
///     *started = true;
///     cvar.notify_one();
/// });
///
/// // wait for the thread to start up
/// let &(ref lock, ref cvar) = &*pair;
/// let mut started = lock.lock();
/// if !*started {
///     cvar.wait(&mut started);
/// }
/// // Note that we used an if instead of a while loop above. This is only
/// // possible because parking_lot's Condvar will never spuriously wake up.
/// // This means that wait() will only return after notify_one or notify_all is
/// // called.
/// ```
pub struct Condvar {
    state: AtomicPtr<RawMutex>,
}

impl Condvar {
    /// Creates a new condition variable which is ready to be waited on and
    /// notified.
    #[inline]
    pub const fn new() -> Condvar {
        Condvar {
            state: AtomicPtr::new(ptr::null_mut()),
        }
    }

    /// Wakes up one blocked thread on this condvar.
    ///
    /// Returns whether a thread was woken up.
    ///
    /// If there is a blocked thread on this condition variable, then it will
    /// be woken up from its call to `wait` or `wait_timeout`. Calls to
    /// `notify_one` are not buffered in any way.
    ///
    /// To wake up all threads, see `notify_all()`.
    ///
    /// # Examples
    ///
    /// ```
    /// use parking_lot::Condvar;
    ///
    /// let condvar = Condvar::new();
    ///
    /// // do something with condvar, share it with other threads
    ///
    /// if !condvar.notify_one() {
    ///     println!("Nobody was listening for this.");
    /// }
    /// ```
    #[inline]
    pub fn notify_one(&self) -> bool {
        // Nothing to do if there are no waiting threads
        let state = self.state.load(Ordering::Relaxed);
        if state.is_null() {
            return false;
        }

        self.notify_one_slow(state)
    }

    #[cold]
    fn notify_one_slow(&self, mutex: *mut RawMutex) -> bool {
        unsafe {
            // Unpark one thread and requeue the rest onto the mutex
            let from = self as *const _ as usize;
            let to = mutex as usize;
            let validate = || {
                // Make sure that our atomic state still points to the same
                // mutex. If not then it means that all threads on the current
                // mutex were woken up and a new waiting thread switched to a
                // different mutex. In that case we can get away with doing
                // nothing.
                if self.state.load(Ordering::Relaxed) != mutex {
                    return RequeueOp::Abort;
                }

                // Unpark one thread if the mutex is unlocked, otherwise just
                // requeue everything to the mutex. This is safe to do here
                // since unlocking the mutex when the parked bit is set requires
                // locking the queue. There is the possibility of a race if the
                // mutex gets locked after we check, but that doesn't matter in
                // this case.
                if (*mutex).mark_parked_if_locked() {
                    RequeueOp::RequeueOne
                } else {
                    RequeueOp::UnparkOne
                }
            };
            let callback = |_op, result: UnparkResult| {
                // Clear our state if there are no more waiting threads
                if !result.have_more_threads {
                    self.state.store(ptr::null_mut(), Ordering::Relaxed);
                }
                TOKEN_NORMAL
            };
            let res = parking_lot_core::unpark_requeue(from, to, validate, callback);

            res.unparked_threads + res.requeued_threads != 0
        }
    }

    /// Wakes up all blocked threads on this condvar.
    ///
    /// Returns the number of threads woken up.
    ///
    /// This method will ensure that any current waiters on the condition
    /// variable are awoken. Calls to `notify_all()` are not buffered in any
    /// way.
    ///
    /// To wake up only one thread, see `notify_one()`.
    #[inline]
    pub fn notify_all(&self) -> usize {
        // Nothing to do if there are no waiting threads
        let state = self.state.load(Ordering::Relaxed);
        if state.is_null() {
            return 0;
        }

        self.notify_all_slow(state)
    }

    #[cold]
    fn notify_all_slow(&self, mutex: *mut RawMutex) -> usize {
        unsafe {
            // Unpark one thread and requeue the rest onto the mutex
            let from = self as *const _ as usize;
            let to = mutex as usize;
            let validate = || {
                // Make sure that our atomic state still points to the same
                // mutex. If not then it means that all threads on the current
                // mutex were woken up and a new waiting thread switched to a
                // different mutex. In that case we can get away with doing
                // nothing.
                if self.state.load(Ordering::Relaxed) != mutex {
                    return RequeueOp::Abort;
                }

                // Clear our state since we are going to unpark or requeue all
                // threads.
                self.state.store(ptr::null_mut(), Ordering::Relaxed);

                // Unpark one thread if the mutex is unlocked, otherwise just
                // requeue everything to the mutex. This is safe to do here
                // since unlocking the mutex when the parked bit is set requires
                // locking the queue. There is the possibility of a race if the
                // mutex gets locked after we check, but that doesn't matter in
                // this case.
                if (*mutex).mark_parked_if_locked() {
                    RequeueOp::RequeueAll
                } else {
                    RequeueOp::UnparkOneRequeueRest
                }
            };
            let callback = |op, result: UnparkResult| {
                // If we requeued threads to the mutex, mark it as having
                // parked threads. The RequeueAll case is already handled above.
                if op == RequeueOp::UnparkOneRequeueRest && result.requeued_threads != 0 {
                    (*mutex).mark_parked();
                }
                TOKEN_NORMAL
            };
            let res = parking_lot_core::unpark_requeue(from, to, validate, callback);

            res.unparked_threads + res.requeued_threads
        }
    }

    /// Blocks the current thread until this condition variable receives a
    /// notification.
    ///
    /// This function will atomically unlock the mutex specified (represented by
    /// `mutex_guard`) and block the current thread. This means that any calls
    /// to `notify_*()` which happen logically after the mutex is unlocked are
    /// candidates to wake this thread up. When this function call returns, the
    /// lock specified will have been re-acquired.
    ///
    /// # Panics
    ///
    /// This function will panic if another thread is waiting on the `Condvar`
    /// with a different `Mutex` object.
    #[inline]
    pub fn wait<T: ?Sized>(&self, mutex_guard: &mut MutexGuard<'_, T>) {
        self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, None);
    }

    /// Waits on this condition variable for a notification, timing out after
    /// the specified time instant.
    ///
    /// The semantics of this function are equivalent to `wait()` except that
    /// the thread will be blocked roughly until `timeout` is reached. This
    /// method should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum
    /// amount of time waited to be precisely `timeout`.
    ///
    /// Note that the best effort is made to ensure that the time waited is
    /// measured with a monotonic clock, and not affected by the changes made to
    /// the system time.
    ///
    /// The returned `WaitTimeoutResult` value indicates if the timeout is
    /// known to have elapsed.
    ///
    /// Like `wait`, the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    ///
    /// # Panics
    ///
    /// This function will panic if another thread is waiting on the `Condvar`
    /// with a different `Mutex` object.
    #[inline]
    pub fn wait_until<T: ?Sized>(
        &self,
        mutex_guard: &mut MutexGuard<'_, T>,
        timeout: Instant,
    ) -> WaitTimeoutResult {
        self.wait_until_internal(
            unsafe { MutexGuard::mutex(mutex_guard).raw() },
            Some(timeout),
        )
    }

    // This is a non-generic function to reduce the monomorphization cost of
    // using `wait_until`.
    fn wait_until_internal(&self, mutex: &RawMutex, timeout: Option<Instant>) -> WaitTimeoutResult {
        unsafe {
            let result;
            let mut bad_mutex = false;
            let mut requeued = false;
            {
                let addr = self as *const _ as usize;
                let lock_addr = mutex as *const _ as *mut _;
                let validate = || {
                    // Ensure we don't use two different mutexes with the same
                    // Condvar at the same time. This is done while locked to
                    // avoid races with notify_one
                    let state = self.state.load(Ordering::Relaxed);
                    if state.is_null() {
                        self.state.store(lock_addr, Ordering::Relaxed);
                    } else if state != lock_addr {
                        bad_mutex = true;
                        return false;
                    }
                    true
                };
                let before_sleep = || {
                    // Unlock the mutex before sleeping...
                    mutex.unlock();
                };
                let timed_out = |k, was_last_thread| {
                    // If we were requeued to a mutex, then we did not time out.
                    // We'll just park ourselves on the mutex again when we try
                    // to lock it later.
                    requeued = k != addr;

                    // If we were the last thread on the queue then we need to
                    // clear our state. This is normally done by the
                    // notify_{one,all} functions when not timing out.
                    if !requeued && was_last_thread {
                        self.state.store(ptr::null_mut(), Ordering::Relaxed);
                    }
                };
                result = parking_lot_core::park(
                    addr,
                    validate,
                    before_sleep,
                    timed_out,
                    DEFAULT_PARK_TOKEN,
                    timeout,
                );
            }

            // Panic if we tried to use multiple mutexes with a Condvar. Note
            // that at this point the MutexGuard is still locked. It will be
            // unlocked by the unwinding logic.
            if bad_mutex {
                panic!("attempted to use a condition variable with more than one mutex");
            }

            // ... and re-lock it once we are done sleeping
            if result == ParkResult::Unparked(TOKEN_HANDOFF) {
                deadlock::acquire_resource(mutex as *const _ as usize);
            } else {
                mutex.lock();
            }

            WaitTimeoutResult(!(result.is_unparked() || requeued))
        }
    }

    /// Waits on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The semantics of this function are equivalent to `wait()` except that
    /// the thread will be blocked for roughly no longer than `timeout`. This
    /// method should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum
    /// amount of time waited to be precisely `timeout`.
    ///
    /// Note that the best effort is made to ensure that the time waited is
    /// measured with a monotonic clock, and not affected by the changes made to
    /// the system time.
    ///
    /// The returned `WaitTimeoutResult` value indicates if the timeout is
    /// known to have elapsed.
    ///
    /// Like `wait`, the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    ///
    /// # Panics
    ///
    /// Panics if the given `timeout` is so large that it can't be added to the current time.
    /// This panic is not possible if the crate is built with the `nightly` feature, then a too
    /// large `timeout` becomes equivalent to just calling `wait`.
    #[inline]
    pub fn wait_for<T: ?Sized>(
        &self,
        mutex_guard: &mut MutexGuard<'_, T>,
        timeout: Duration,
    ) -> WaitTimeoutResult {
        let deadline = util::to_deadline(timeout);
        self.wait_until_internal(unsafe { MutexGuard::mutex(mutex_guard).raw() }, deadline)
    }
}

impl Default for Condvar {
    #[inline]
    fn default() -> Condvar {
        Condvar::new()
    }
}

impl fmt::Debug for Condvar {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Condvar { .. }")
    }
}

#[cfg(test)]
mod tests {
    use crate::{Condvar, Mutex, MutexGuard};
    use instant::Instant;
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;
    use std::time::Duration;

    #[test]
    fn smoke() {
        let c = Condvar::new();
        c.notify_one();
        c.notify_all();
    }

    #[test]
    fn notify_one() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock();
        let _t = thread::spawn(move || {
            let _g = m2.lock();
            c2.notify_one();
        });
        c.wait(&mut g);
    }

    #[test]
    fn notify_all() {
        const N: usize = 10;

        let data = Arc::new((Mutex::new(0), Condvar::new()));
        let (tx, rx) = channel();
        for _ in 0..N {
            let data = data.clone();
            let tx = tx.clone();
            thread::spawn(move || {
                let &(ref lock, ref cond) = &*data;
                let mut cnt = lock.lock();
                *cnt += 1;
                if *cnt == N {
                    tx.send(()).unwrap();
                }
                while *cnt != 0 {
                    cond.wait(&mut cnt);
                }
                tx.send(()).unwrap();
            });
        }
        drop(tx);

        let &(ref lock, ref cond) = &*data;
        rx.recv().unwrap();
        let mut cnt = lock.lock();
        *cnt = 0;
        cond.notify_all();
        drop(cnt);

        for _ in 0..N {
            rx.recv().unwrap();
        }
    }

    #[test]
    fn notify_one_return_true() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock();
        let _t = thread::spawn(move || {
            let _g = m2.lock();
            assert!(c2.notify_one());
        });
        c.wait(&mut g);
    }

    #[test]
    fn notify_one_return_false() {
        let m = Arc::new(Mutex::new(()));
        let c = Arc::new(Condvar::new());

        let _t = thread::spawn(move || {
            let _g = m.lock();
            assert!(!c.notify_one());
        });
    }

    #[test]
    fn notify_all_return() {
        const N: usize = 10;

        let data = Arc::new((Mutex::new(0), Condvar::new()));
        let (tx, rx) = channel();
        for _ in 0..N {
            let data = data.clone();
            let tx = tx.clone();
            thread::spawn(move || {
                let &(ref lock, ref cond) = &*data;
                let mut cnt = lock.lock();
                *cnt += 1;
                if *cnt == N {
                    tx.send(()).unwrap();
                }
                while *cnt != 0 {
                    cond.wait(&mut cnt);
                }
                tx.send(()).unwrap();
            });
        }
        drop(tx);

        let &(ref lock, ref cond) = &*data;
        rx.recv().unwrap();
        let mut cnt = lock.lock();
        *cnt = 0;
        assert_eq!(cond.notify_all(), N);
        drop(cnt);

        for _ in 0..N {
            rx.recv().unwrap();
        }

        assert_eq!(cond.notify_all(), 0);
    }

    #[test]
    fn wait_for() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock();
        let no_timeout = c.wait_for(&mut g, Duration::from_millis(1));
        assert!(no_timeout.timed_out());

        let _t = thread::spawn(move || {
            let _g = m2.lock();
            c2.notify_one();
        });
        // Non-nightly panics on too large timeouts. Nightly treats it as indefinite wait.
        let very_long_timeout = if cfg!(feature = "nightly") {
            Duration::from_secs(u64::max_value())
        } else {
            Duration::from_millis(u32::max_value() as u64)
        };

        let timeout_res = c.wait_for(&mut g, very_long_timeout);
        assert!(!timeout_res.timed_out());

        drop(g);
    }

    #[test]
    fn wait_until() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock();
        let no_timeout = c.wait_until(&mut g, Instant::now() + Duration::from_millis(1));
        assert!(no_timeout.timed_out());
        let _t = thread::spawn(move || {
            let _g = m2.lock();
            c2.notify_one();
        });
        let timeout_res = c.wait_until(
            &mut g,
            Instant::now() + Duration::from_millis(u32::max_value() as u64),
        );
        assert!(!timeout_res.timed_out());
        drop(g);
    }

    #[test]
    #[should_panic]
    fn two_mutexes() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let m3 = Arc::new(Mutex::new(()));
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        // Make sure we don't leave the child thread dangling
        struct PanicGuard<'a>(&'a Condvar);
        impl<'a> Drop for PanicGuard<'a> {
            fn drop(&mut self) {
                self.0.notify_one();
            }
        }

        let (tx, rx) = channel();
        let g = m.lock();
        let _t = thread::spawn(move || {
            let mut g = m2.lock();
            tx.send(()).unwrap();
            c2.wait(&mut g);
        });
        drop(g);
        rx.recv().unwrap();
        let _g = m.lock();
        let _guard = PanicGuard(&*c);
        c.wait(&mut m3.lock());
    }

    #[test]
    fn two_mutexes_disjoint() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let m3 = Arc::new(Mutex::new(()));
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock();
        let _t = thread::spawn(move || {
            let _g = m2.lock();
            c2.notify_one();
        });
        c.wait(&mut g);
        drop(g);

        let _ = c.wait_for(&mut m3.lock(), Duration::from_millis(1));
    }

    #[test]
    fn test_debug_condvar() {
        let c = Condvar::new();
        assert_eq!(format!("{:?}", c), "Condvar { .. }");
    }

    #[test]
    fn test_condvar_requeue() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();
        let t = thread::spawn(move || {
            let mut g = m2.lock();
            c2.wait(&mut g);
        });

        let mut g = m.lock();
        while !c.notify_one() {
            // Wait for the thread to get into wait()
            MutexGuard::bump(&mut g);
            // Yield, so the other thread gets a chance to do something.
            // (At least Miri needs this, because it doesn't preempt threads.)
            thread::yield_now();
        }
        // The thread should have been requeued to the mutex, which we wake up now.
        drop(g);
        t.join().unwrap();
    }

    #[test]
    fn test_issue_129() {
        let locks = Arc::new((Mutex::new(()), Condvar::new()));

        let (tx, rx) = channel();
        for _ in 0..4 {
            let locks = locks.clone();
            let tx = tx.clone();
            thread::spawn(move || {
                let mut guard = locks.0.lock();
                locks.1.wait(&mut guard);
                locks.1.wait_for(&mut guard, Duration::from_millis(1));
                locks.1.notify_one();
                tx.send(()).unwrap();
            });
        }

        thread::sleep(Duration::from_millis(100));
        locks.1.notify_one();

        for _ in 0..4 {
            assert_eq!(rx.recv_timeout(Duration::from_millis(500)), Ok(()));
        }
    }
}

/// This module contains an integration test that is heavily inspired from WebKit's own integration
/// tests for it's own Condvar.
#[cfg(test)]
mod webkit_queue_test {
    use crate::{Condvar, Mutex, MutexGuard};
    use std::{collections::VecDeque, sync::Arc, thread, time::Duration};

    #[derive(Clone, Copy)]
    enum Timeout {
        Bounded(Duration),
        Forever,
    }

    #[derive(Clone, Copy)]
    enum NotifyStyle {
        One,
        All,
    }

    struct Queue {
        items: VecDeque<usize>,
        should_continue: bool,
    }

    impl Queue {
        fn new() -> Self {
            Self {
                items: VecDeque::new(),
                should_continue: true,
            }
        }
    }

    fn wait<T: ?Sized>(
        condition: &Condvar,
        lock: &mut MutexGuard<'_, T>,
        predicate: impl Fn(&mut MutexGuard<'_, T>) -> bool,
        timeout: &Timeout,
    ) {
        while !predicate(lock) {
            match timeout {
                Timeout::Forever => condition.wait(lock),
                Timeout::Bounded(bound) => {
                    condition.wait_for(lock, *bound);
                }
            }
        }
    }

    fn notify(style: NotifyStyle, condition: &Condvar, should_notify: bool) {
        match style {
            NotifyStyle::One => {
                condition.notify_one();
            }
            NotifyStyle::All => {
                if should_notify {
                    condition.notify_all();
                }
            }
        }
    }

    fn run_queue_test(
        num_producers: usize,
        num_consumers: usize,
        max_queue_size: usize,
        messages_per_producer: usize,
        notify_style: NotifyStyle,
        timeout: Timeout,
        delay: Duration,
    ) {
        let input_queue = Arc::new(Mutex::new(Queue::new()));
        let empty_condition = Arc::new(Condvar::new());
        let full_condition = Arc::new(Condvar::new());

        let output_vec = Arc::new(Mutex::new(vec![]));

        let consumers = (0..num_consumers)
            .map(|_| {
                consumer_thread(
                    input_queue.clone(),
                    empty_condition.clone(),
                    full_condition.clone(),
                    timeout,
                    notify_style,
                    output_vec.clone(),
                    max_queue_size,
                )
            })
            .collect::<Vec<_>>();
        let producers = (0..num_producers)
            .map(|_| {
                producer_thread(
                    messages_per_producer,
                    input_queue.clone(),
                    empty_condition.clone(),
                    full_condition.clone(),
                    timeout,
                    notify_style,
                    max_queue_size,
                )
            })
            .collect::<Vec<_>>();

        thread::sleep(delay);

        for producer in producers.into_iter() {
            producer.join().expect("Producer thread panicked");
        }

        {
            let mut input_queue = input_queue.lock();
            input_queue.should_continue = false;
        }
        empty_condition.notify_all();

        for consumer in consumers.into_iter() {
            consumer.join().expect("Consumer thread panicked");
        }

        let mut output_vec = output_vec.lock();
        assert_eq!(output_vec.len(), num_producers * messages_per_producer);
        output_vec.sort();
        for msg_idx in 0..messages_per_producer {
            for producer_idx in 0..num_producers {
                assert_eq!(msg_idx, output_vec[msg_idx * num_producers + producer_idx]);
            }
        }
    }

    fn consumer_thread(
        input_queue: Arc<Mutex<Queue>>,
        empty_condition: Arc<Condvar>,
        full_condition: Arc<Condvar>,
        timeout: Timeout,
        notify_style: NotifyStyle,
        output_queue: Arc<Mutex<Vec<usize>>>,
        max_queue_size: usize,
    ) -> thread::JoinHandle<()> {
        thread::spawn(move || loop {
            let (should_notify, result) = {
                let mut queue = input_queue.lock();
                wait(
                    &*empty_condition,
                    &mut queue,
                    |state| -> bool { !state.items.is_empty() || !state.should_continue },
                    &timeout,
                );
                if queue.items.is_empty() && !queue.should_continue {
                    return;
                }
                let should_notify = queue.items.len() == max_queue_size;
                let result = queue.items.pop_front();
                std::mem::drop(queue);
                (should_notify, result)
            };
            notify(notify_style, &*full_condition, should_notify);

            if let Some(result) = result {
                output_queue.lock().push(result);
            }
        })
    }

    fn producer_thread(
        num_messages: usize,
        queue: Arc<Mutex<Queue>>,
        empty_condition: Arc<Condvar>,
        full_condition: Arc<Condvar>,
        timeout: Timeout,
        notify_style: NotifyStyle,
        max_queue_size: usize,
    ) -> thread::JoinHandle<()> {
        thread::spawn(move || {
            for message in 0..num_messages {
                let should_notify = {
                    let mut queue = queue.lock();
                    wait(
                        &*full_condition,
                        &mut queue,
                        |state| state.items.len() < max_queue_size,
                        &timeout,
                    );
                    let should_notify = queue.items.is_empty();
                    queue.items.push_back(message);
                    std::mem::drop(queue);
                    should_notify
                };
                notify(notify_style, &*empty_condition, should_notify);
            }
        })
    }

    macro_rules! run_queue_tests {
        ( $( $name:ident(
            num_producers: $num_producers:expr,
            num_consumers: $num_consumers:expr,
            max_queue_size: $max_queue_size:expr,
            messages_per_producer: $messages_per_producer:expr,
            notification_style: $notification_style:expr,
            timeout: $timeout:expr,
            delay_seconds: $delay_seconds:expr);
        )* ) => {
            $(#[test]
            fn $name() {
                let delay = Duration::from_secs($delay_seconds);
                run_queue_test(
                    $num_producers,
                    $num_consumers,
                    $max_queue_size,
                    $messages_per_producer,
                    $notification_style,
                    $timeout,
                    delay,
                    );
            })*
        };
    }

    run_queue_tests! {
        sanity_check_queue(
            num_producers: 1,
            num_consumers: 1,
            max_queue_size: 1,
            messages_per_producer: 100_000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Bounded(Duration::from_secs(1)),
            delay_seconds: 0
        );
        sanity_check_queue_timeout(
            num_producers: 1,
            num_consumers: 1,
            max_queue_size: 1,
            messages_per_producer: 100_000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        new_test_without_timeout_5(
            num_producers: 1,
            num_consumers: 5,
            max_queue_size: 1,
            messages_per_producer: 100_000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        one_producer_one_consumer_one_slot(
            num_producers: 1,
            num_consumers: 1,
            max_queue_size: 1,
            messages_per_producer: 100_000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        one_producer_one_consumer_one_slot_timeout(
            num_producers: 1,
            num_consumers: 1,
            max_queue_size: 1,
            messages_per_producer: 100_000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 1
        );
        one_producer_one_consumer_hundred_slots(
            num_producers: 1,
            num_consumers: 1,
            max_queue_size: 100,
            messages_per_producer: 1_000_000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        ten_producers_one_consumer_one_slot(
            num_producers: 10,
            num_consumers: 1,
            max_queue_size: 1,
            messages_per_producer: 10000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        ten_producers_one_consumer_hundred_slots_notify_all(
            num_producers: 10,
            num_consumers: 1,
            max_queue_size: 100,
            messages_per_producer: 10000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        ten_producers_one_consumer_hundred_slots_notify_one(
            num_producers: 10,
            num_consumers: 1,
            max_queue_size: 100,
            messages_per_producer: 10000,
            notification_style: NotifyStyle::One,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        one_producer_ten_consumers_one_slot(
            num_producers: 1,
            num_consumers: 10,
            max_queue_size: 1,
            messages_per_producer: 10000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        one_producer_ten_consumers_hundred_slots_notify_all(
            num_producers: 1,
            num_consumers: 10,
            max_queue_size: 100,
            messages_per_producer: 100_000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        one_producer_ten_consumers_hundred_slots_notify_one(
            num_producers: 1,
            num_consumers: 10,
            max_queue_size: 100,
            messages_per_producer: 100_000,
            notification_style: NotifyStyle::One,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        ten_producers_ten_consumers_one_slot(
            num_producers: 10,
            num_consumers: 10,
            max_queue_size: 1,
            messages_per_producer: 50000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        ten_producers_ten_consumers_hundred_slots_notify_all(
            num_producers: 10,
            num_consumers: 10,
            max_queue_size: 100,
            messages_per_producer: 50000,
            notification_style: NotifyStyle::All,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
        ten_producers_ten_consumers_hundred_slots_notify_one(
            num_producers: 10,
            num_consumers: 10,
            max_queue_size: 100,
            messages_per_producer: 50000,
            notification_style: NotifyStyle::One,
            timeout: Timeout::Forever,
            delay_seconds: 0
        );
    }
}