1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
use libc::c_int;
use std::fs::File;
use std::io::{self, Read, Write};
use std::mem;
use std::os::unix::prelude::*;
use std::process::Command;
use std::ptr;
use std::sync::{Arc, Once};
use std::thread::{self, Builder, JoinHandle};
use std::time::Duration;

#[derive(Debug)]
pub struct Client {
    read: File,
    write: File,
}

#[derive(Debug)]
pub struct Acquired {
    byte: u8,
}

impl Client {
    pub fn new(limit: usize) -> io::Result<Client> {
        let client = unsafe { Client::mk()? };
        // I don't think the character written here matters, but I could be
        // wrong!
        for _ in 0..limit {
            (&client.write).write(&[b'|'])?;
        }
        Ok(client)
    }

    unsafe fn mk() -> io::Result<Client> {
        let mut pipes = [0; 2];

        // Attempt atomically-create-with-cloexec if we can on Linux,
        // detected by using the `syscall` function in `libc` to try to work
        // with as many kernels/glibc implementations as possible.
        #[cfg(target_os = "linux")]
        {
            use std::sync::atomic::{AtomicBool, Ordering};

            static PIPE2_AVAILABLE: AtomicBool = AtomicBool::new(true);
            if PIPE2_AVAILABLE.load(Ordering::SeqCst) {
                match libc::syscall(libc::SYS_pipe2, pipes.as_mut_ptr(), libc::O_CLOEXEC) {
                    -1 => {
                        let err = io::Error::last_os_error();
                        if err.raw_os_error() == Some(libc::ENOSYS) {
                            PIPE2_AVAILABLE.store(false, Ordering::SeqCst);
                        } else {
                            return Err(err);
                        }
                    }
                    _ => return Ok(Client::from_fds(pipes[0], pipes[1])),
                }
            }
        }

        cvt(libc::pipe(pipes.as_mut_ptr()))?;
        drop(set_cloexec(pipes[0], true));
        drop(set_cloexec(pipes[1], true));
        Ok(Client::from_fds(pipes[0], pipes[1]))
    }

    pub unsafe fn open(s: &str) -> Option<Client> {
        let mut parts = s.splitn(2, ',');
        let read = parts.next().unwrap();
        let write = match parts.next() {
            Some(s) => s,
            None => return None,
        };

        let read = match read.parse() {
            Ok(n) => n,
            Err(_) => return None,
        };
        let write = match write.parse() {
            Ok(n) => n,
            Err(_) => return None,
        };

        // Ok so we've got two integers that look like file descriptors, but
        // for extra sanity checking let's see if they actually look like
        // instances of a pipe before we return the client.
        //
        // If we're called from `make` *without* the leading + on our rule
        // then we'll have `MAKEFLAGS` env vars but won't actually have
        // access to the file descriptors.
        if is_valid_fd(read) && is_valid_fd(write) {
            drop(set_cloexec(read, true));
            drop(set_cloexec(write, true));
            Some(Client::from_fds(read, write))
        } else {
            None
        }
    }

    unsafe fn from_fds(read: c_int, write: c_int) -> Client {
        Client {
            read: File::from_raw_fd(read),
            write: File::from_raw_fd(write),
        }
    }

    pub fn acquire(&self) -> io::Result<Acquired> {
        // Ignore interrupts and keep trying if that happens
        loop {
            if let Some(token) = self.acquire_allow_interrupts()? {
                return Ok(token);
            }
        }
    }

    /// Block waiting for a token, returning `None` if we're interrupted with
    /// EINTR.
    fn acquire_allow_interrupts(&self) -> io::Result<Option<Acquired>> {
        // We don't actually know if the file descriptor here is set in
        // blocking or nonblocking mode. AFAIK all released versions of
        // `make` use blocking fds for the jobserver, but the unreleased
        // version of `make` doesn't. In the unreleased version jobserver
        // fds are set to nonblocking and combined with `pselect`
        // internally.
        //
        // Here we try to be compatible with both strategies. We
        // unconditionally expect the file descriptor to be in nonblocking
        // mode and if it happens to be in blocking mode then most of this
        // won't end up actually being necessary!
        //
        // We use `poll` here to block this thread waiting for read
        // readiness, and then afterwards we perform the `read` itself. If
        // the `read` returns that it would block then we start over and try
        // again.
        //
        // Also note that we explicitly don't handle EINTR here. That's used
        // to shut us down, so we otherwise punt all errors upwards.
        unsafe {
            let mut fd: libc::pollfd = mem::zeroed();
            fd.fd = self.read.as_raw_fd();
            fd.events = libc::POLLIN;
            loop {
                fd.revents = 0;
                if libc::poll(&mut fd, 1, -1) == -1 {
                    let e = io::Error::last_os_error();
                    match e.kind() {
                        io::ErrorKind::Interrupted => return Ok(None),
                        _ => return Err(e),
                    }
                }
                if fd.revents == 0 {
                    continue;
                }
                let mut buf = [0];
                match (&self.read).read(&mut buf) {
                    Ok(1) => return Ok(Some(Acquired { byte: buf[0] })),
                    Ok(_) => {
                        return Err(io::Error::new(
                            io::ErrorKind::Other,
                            "early EOF on jobserver pipe",
                        ))
                    }
                    Err(e) => match e.kind() {
                        io::ErrorKind::WouldBlock | io::ErrorKind::Interrupted => return Ok(None),
                        _ => return Err(e),
                    },
                }
            }
        }
    }

    pub fn release(&self, data: Option<&Acquired>) -> io::Result<()> {
        // Note that the fd may be nonblocking but we're going to go ahead
        // and assume that the writes here are always nonblocking (we can
        // always quickly release a token). If that turns out to not be the
        // case we'll get an error anyway!
        let byte = data.map(|d| d.byte).unwrap_or(b'+');
        match (&self.write).write(&[byte])? {
            1 => Ok(()),
            _ => Err(io::Error::new(
                io::ErrorKind::Other,
                "failed to write token back to jobserver",
            )),
        }
    }

    pub fn string_arg(&self) -> String {
        format!("{},{} -j", self.read.as_raw_fd(), self.write.as_raw_fd())
    }

    pub fn configure(&self, cmd: &mut Command) {
        // Here we basically just want to say that in the child process
        // we'll configure the read/write file descriptors to *not* be
        // cloexec, so they're inherited across the exec and specified as
        // integers through `string_arg` above.
        let read = self.read.as_raw_fd();
        let write = self.write.as_raw_fd();
        unsafe {
            cmd.pre_exec(move || {
                set_cloexec(read, false)?;
                set_cloexec(write, false)?;
                Ok(())
            });
        }
    }
}

#[derive(Debug)]
pub struct Helper {
    thread: JoinHandle<()>,
    state: Arc<super::HelperState>,
}

pub(crate) fn spawn_helper(
    client: crate::Client,
    state: Arc<super::HelperState>,
    mut f: Box<dyn FnMut(io::Result<crate::Acquired>) + Send>,
) -> io::Result<Helper> {
    static USR1_INIT: Once = Once::new();
    let mut err = None;
    USR1_INIT.call_once(|| unsafe {
        let mut new: libc::sigaction = mem::zeroed();
        new.sa_sigaction = sigusr1_handler as usize;
        new.sa_flags = libc::SA_SIGINFO as _;
        if libc::sigaction(libc::SIGUSR1, &new, ptr::null_mut()) != 0 {
            err = Some(io::Error::last_os_error());
        }
    });

    if let Some(e) = err.take() {
        return Err(e);
    }

    let state2 = state.clone();
    let thread = Builder::new().spawn(move || {
        state2.for_each_request(|helper| loop {
            match client.inner.acquire_allow_interrupts() {
                Ok(Some(data)) => {
                    break f(Ok(crate::Acquired {
                        client: client.inner.clone(),
                        data,
                        disabled: false,
                    }))
                }
                Err(e) => break f(Err(e)),
                Ok(None) if helper.producer_done() => break,
                Ok(None) => {}
            }
        });
    })?;

    Ok(Helper { thread, state })
}

impl Helper {
    pub fn join(self) {
        let dur = Duration::from_millis(10);
        let mut state = self.state.lock();
        debug_assert!(state.producer_done);

        // We need to join our helper thread, and it could be blocked in one
        // of two locations. First is the wait for a request, but the
        // initial drop of `HelperState` will take care of that. Otherwise
        // it may be blocked in `client.acquire()`. We actually have no way
        // of interrupting that, so resort to `pthread_kill` as a fallback.
        // This signal should interrupt any blocking `read` call with
        // `io::ErrorKind::Interrupt` and cause the thread to cleanly exit.
        //
        // Note that we don't do this forever though since there's a chance
        // of bugs, so only do this opportunistically to make a best effort
        // at clearing ourselves up.
        for _ in 0..100 {
            if state.consumer_done {
                break;
            }
            unsafe {
                // Ignore the return value here of `pthread_kill`,
                // apparently on OSX if you kill a dead thread it will
                // return an error, but on other platforms it may not. In
                // that sense we don't actually know if this will succeed or
                // not!
                libc::pthread_kill(self.thread.as_pthread_t() as _, libc::SIGUSR1);
            }
            state = self
                .state
                .cvar
                .wait_timeout(state, dur)
                .unwrap_or_else(|e| e.into_inner())
                .0;
            thread::yield_now(); // we really want the other thread to run
        }

        // If we managed to actually see the consumer get done, then we can
        // definitely wait for the thread. Otherwise it's... off in the ether
        // I guess?
        if state.consumer_done {
            drop(self.thread.join());
        }
    }
}

fn is_valid_fd(fd: c_int) -> bool {
    unsafe {
        return libc::fcntl(fd, libc::F_GETFD) != -1;
    }
}

fn set_cloexec(fd: c_int, set: bool) -> io::Result<()> {
    unsafe {
        let previous = cvt(libc::fcntl(fd, libc::F_GETFD))?;
        let new = if set {
            previous | libc::FD_CLOEXEC
        } else {
            previous & !libc::FD_CLOEXEC
        };
        if new != previous {
            cvt(libc::fcntl(fd, libc::F_SETFD, new))?;
        }
        Ok(())
    }
}

fn cvt(t: c_int) -> io::Result<c_int> {
    if t == -1 {
        Err(io::Error::last_os_error())
    } else {
        Ok(t)
    }
}

extern "C" fn sigusr1_handler(
    _signum: c_int,
    _info: *mut libc::siginfo_t,
    _ptr: *mut libc::c_void,
) {
    // nothing to do
}