1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
use std::{cmp, mem, ops};

use cast;
use float::Float;
use num_cpus;
use thread_scoped as thread;

use tuple::{Tuple, TupledDistributionsBuilder};
use univariate::resamples::Resamples;
use univariate::Percentiles;

/// A collection of data points drawn from a population
///
/// Invariants:
///
/// - The sample contains at least 2 data points
/// - The sample contains no `NaN`s
pub struct Sample<A>([A]);

// TODO(rust-lang/rfcs#735) move this `impl` into a private percentiles module
impl<A> Sample<A>
where
    A: Float,
{
    /// Creates a new sample from an existing slice
    ///
    /// # Panics
    ///
    /// Panics if `slice` contains any `NaN` or if `slice` has less than two elements
    #[cfg_attr(feature = "cargo-clippy", allow(clippy::new_ret_no_self))]
    pub fn new(slice: &[A]) -> &Sample<A> {
        assert!(slice.len() > 1 && slice.iter().all(|x| !x.is_nan()));

        unsafe { mem::transmute(slice) }
    }

    /// Returns the biggest element in the sample
    ///
    /// - Time: `O(length)`
    pub fn max(&self) -> A {
        let mut elems = self.iter();

        match elems.next() {
            Some(&head) => elems.fold(head, |a, &b| a.max(b)),
            // NB `unreachable!` because `Sample` is guaranteed to have at least one data point
            None => unreachable!(),
        }
    }

    /// Returns the arithmetic average of the sample
    ///
    /// - Time: `O(length)`
    pub fn mean(&self) -> A {
        let n = self.len();

        self.sum() / A::cast(n)
    }

    /// Returns the median absolute deviation
    ///
    /// The `median` can be optionally passed along to speed up (2X) the computation
    ///
    /// - Time: `O(length)`
    /// - Memory: `O(length)`
    pub fn median_abs_dev(&self, median: Option<A>) -> A
    where
        usize: cast::From<A, Output = Result<usize, cast::Error>>,
    {
        let median = median.unwrap_or_else(|| self.percentiles().median());

        // NB Although this operation can be SIMD accelerated, the gain is negligible because the
        // bottle neck is the sorting operation which is part of the computation of the median
        let abs_devs = self.iter().map(|&x| (x - median).abs()).collect::<Vec<_>>();

        let abs_devs: &Self = Self::new(&abs_devs);

        abs_devs.percentiles().median() * A::cast(1.4826)
    }

    /// Returns the median absolute deviation as a percentage of the median
    ///
    /// - Time: `O(length)`
    /// - Memory: `O(length)`
    pub fn median_abs_dev_pct(&self) -> A
    where
        usize: cast::From<A, Output = Result<usize, cast::Error>>,
    {
        let _100 = A::cast(100);
        let median = self.percentiles().median();
        let mad = self.median_abs_dev(Some(median));

        (mad / median) * _100
    }

    /// Returns the smallest element in the sample
    ///
    /// - Time: `O(length)`
    pub fn min(&self) -> A {
        let mut elems = self.iter();

        match elems.next() {
            Some(&elem) => elems.fold(elem, |a, &b| a.min(b)),
            // NB `unreachable!` because `Sample` is guaranteed to have at least one data point
            None => unreachable!(),
        }
    }

    /// Returns a "view" into the percentiles of the sample
    ///
    /// This "view" makes consecutive computations of percentiles much faster (`O(1)`)
    ///
    /// - Time: `O(N log N) where N = length`
    /// - Memory: `O(length)`
    pub fn percentiles(&self) -> Percentiles<A>
    where
        usize: cast::From<A, Output = Result<usize, cast::Error>>,
    {
        use std::cmp::Ordering;

        // NB This function assumes that there are no `NaN`s in the sample
        fn cmp<T>(a: &T, b: &T) -> Ordering
        where
            T: PartialOrd,
        {
            if a < b {
                Ordering::Less
            } else if a == b {
                Ordering::Equal
            } else {
                Ordering::Greater
            }
        }

        let mut v = self.to_vec().into_boxed_slice();
        v.sort_by(cmp);

        // NB :-1: to intra-crate privacy rules
        unsafe { mem::transmute(v) }
    }

    /// Returns the standard deviation of the sample
    ///
    /// The `mean` can be optionally passed along to speed up (2X) the computation
    ///
    /// - Time: `O(length)`
    pub fn std_dev(&self, mean: Option<A>) -> A {
        self.var(mean).sqrt()
    }

    /// Returns the standard deviation as a percentage of the mean
    ///
    /// - Time: `O(length)`
    pub fn std_dev_pct(&self) -> A {
        let _100 = A::cast(100);
        let mean = self.mean();
        let std_dev = self.std_dev(Some(mean));

        (std_dev / mean) * _100
    }

    /// Returns the sum of all the elements of the sample
    ///
    /// - Time: `O(length)`
    pub fn sum(&self) -> A {
        ::sum(self)
    }

    /// Returns the t score between these two samples
    ///
    /// - Time: `O(length)`
    pub fn t(&self, other: &Sample<A>) -> A {
        let (x_bar, y_bar) = (self.mean(), other.mean());
        let (s2_x, s2_y) = (self.var(Some(x_bar)), other.var(Some(y_bar)));
        let n_x = A::cast(self.len());
        let n_y = A::cast(other.len());
        let num = x_bar - y_bar;
        let den = (s2_x / n_x + s2_y / n_y).sqrt();

        num / den
    }

    /// Returns the variance of the sample
    ///
    /// The `mean` can be optionally passed along to speed up (2X) the computation
    ///
    /// - Time: `O(length)`
    pub fn var(&self, mean: Option<A>) -> A {
        use std::ops::Add;

        let mean = mean.unwrap_or_else(|| self.mean());
        let slice = self;

        let sum = slice
            .iter()
            .map(|&x| (x - mean).powi(2))
            .fold(A::cast(0), Add::add);

        sum / A::cast(slice.len() - 1)
    }

    // TODO Remove the `T` parameter in favor of `S::Output`
    /// Returns the bootstrap distributions of the parameters estimated by the 1-sample statistic
    ///
    /// - Multi-threaded
    /// - Time: `O(nresamples)`
    /// - Memory: `O(nresamples)`
    pub fn bootstrap<T, S>(&self, nresamples: usize, statistic: S) -> T::Distributions
    where
        S: Fn(&Sample<A>) -> T,
        S: Sync,
        T: Tuple,
        T: Send,
        T::Distributions: Send,
        T::Builder: Send,
    {
        let ncpus = num_cpus::get();

        unsafe {
            // TODO need some sensible threshold to trigger the multi-threaded path
            if ncpus > 1 && nresamples > self.len() {
                let granularity = nresamples / ncpus + 1;
                let statistic = &statistic;

                let chunks = (0..ncpus)
                    .map(|i| {
                        // for now I'll make do with aliasing and careful non-overlapping indexing
                        let mut sub_distributions: T::Builder =
                            TupledDistributionsBuilder::new(granularity);
                        let mut resamples = Resamples::new(self);
                        let offset = i * granularity;

                        thread::scoped(move || {
                            for _ in offset..cmp::min(offset + granularity, nresamples) {
                                sub_distributions.push(statistic(resamples.next()))
                            }
                            sub_distributions
                        })
                    })
                    .collect::<Vec<_>>();

                let mut builder: T::Builder = TupledDistributionsBuilder::new(nresamples);
                for chunk in chunks {
                    builder.extend(&mut (chunk.join()));
                }
                builder.complete()
            } else {
                let mut builder: T::Builder = TupledDistributionsBuilder::new(nresamples);
                let mut resamples = Resamples::new(self);

                for _ in 0..nresamples {
                    builder.push(statistic(resamples.next()));
                }

                builder.complete()
            }
        }
    }

    #[cfg(test)]
    pub fn iqr(&self) -> A
    where
        usize: cast::From<A, Output = Result<usize, cast::Error>>,
    {
        self.percentiles().iqr()
    }

    #[cfg(test)]
    pub fn median(&self) -> A
    where
        usize: cast::From<A, Output = Result<usize, cast::Error>>,
    {
        self.percentiles().median()
    }
}

impl<A> ops::Deref for Sample<A> {
    type Target = [A];

    fn deref(&self) -> &[A] {
        &self.0
    }
}