1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
use super::{IndexedParallelIterator, IntoParallelIterator, ParallelExtend, ParallelIterator}; use std::slice; mod consumer; use self::consumer::CollectConsumer; use self::consumer::CollectResult; use super::unzip::unzip_indexed; mod test; /// Collects the results of the exact iterator into the specified vector. /// /// This is called by `IndexedParallelIterator::collect_into_vec`. pub(super) fn collect_into_vec<I, T>(pi: I, v: &mut Vec<T>) where I: IndexedParallelIterator<Item = T>, T: Send, { v.truncate(0); // clear any old data let len = pi.len(); Collect::new(v, len).with_consumer(|consumer| pi.drive(consumer)); } /// Collects the results of the iterator into the specified vector. /// /// Technically, this only works for `IndexedParallelIterator`, but we're faking a /// bit of specialization here until Rust can do that natively. Callers are /// using `opt_len` to find the length before calling this, and only exact /// iterators will return anything but `None` there. /// /// Since the type system doesn't understand that contract, we have to allow /// *any* `ParallelIterator` here, and `CollectConsumer` has to also implement /// `UnindexedConsumer`. That implementation panics `unreachable!` in case /// there's a bug where we actually do try to use this unindexed. fn special_extend<I, T>(pi: I, len: usize, v: &mut Vec<T>) where I: ParallelIterator<Item = T>, T: Send, { Collect::new(v, len).with_consumer(|consumer| pi.drive_unindexed(consumer)); } /// Unzips the results of the exact iterator into the specified vectors. /// /// This is called by `IndexedParallelIterator::unzip_into_vecs`. pub(super) fn unzip_into_vecs<I, A, B>(pi: I, left: &mut Vec<A>, right: &mut Vec<B>) where I: IndexedParallelIterator<Item = (A, B)>, A: Send, B: Send, { // clear any old data left.truncate(0); right.truncate(0); let len = pi.len(); Collect::new(right, len).with_consumer(|right_consumer| { let mut right_result = None; Collect::new(left, len).with_consumer(|left_consumer| { let (left_r, right_r) = unzip_indexed(pi, left_consumer, right_consumer); right_result = Some(right_r); left_r }); right_result.unwrap() }); } /// Manage the collection vector. struct Collect<'c, T: Send> { vec: &'c mut Vec<T>, len: usize, } impl<'c, T: Send + 'c> Collect<'c, T> { fn new(vec: &'c mut Vec<T>, len: usize) -> Self { Collect { vec, len } } /// Create a consumer on the slice of memory we are collecting into. /// /// The consumer needs to be used inside the scope function, and the /// complete collect result passed back. /// /// This method will verify the collect result, and panic if the slice /// was not fully written into. Otherwise, in the successful case, /// the vector is complete with the collected result. fn with_consumer<F>(mut self, scope_fn: F) where F: FnOnce(CollectConsumer<'_, T>) -> CollectResult<'_, T>, { unsafe { let slice = Self::reserve_get_tail_slice(&mut self.vec, self.len); let result = scope_fn(CollectConsumer::new(slice)); // The CollectResult represents a contiguous part of the // slice, that has been written to. // On unwind here, the CollectResult will be dropped. // If some producers on the way did not produce enough elements, // partial CollectResults may have been dropped without // being reduced to the final result, and we will see // that as the length coming up short. // // Here, we assert that `slice` is fully initialized. This is // checked by the following assert, which verifies if a // complete CollectResult was produced; if the length is // correct, it is necessarily covering the target slice. // Since we know that the consumer cannot have escaped from // `drive` (by parametricity, essentially), we know that any // stores that will happen, have happened. Unless some code is buggy, // that means we should have seen `len` total writes. let actual_writes = result.len(); assert!( actual_writes == self.len, "expected {} total writes, but got {}", self.len, actual_writes ); // Release the result's mutable borrow and "proxy ownership" // of the elements, before the vector takes it over. result.release_ownership(); let new_len = self.vec.len() + self.len; self.vec.set_len(new_len); } } /// Reserve space for `len` more elements in the vector, /// and return a slice to the uninitialized tail of the vector /// /// Safety: The tail slice is uninitialized unsafe fn reserve_get_tail_slice(vec: &mut Vec<T>, len: usize) -> &mut [T] { // Reserve the new space. vec.reserve(len); // Get a correct borrow, then extend it for the newly added length. let start = vec.len(); let slice = &mut vec[start..]; slice::from_raw_parts_mut(slice.as_mut_ptr(), len) } } /// Extends a vector with items from a parallel iterator. impl<T> ParallelExtend<T> for Vec<T> where T: Send, { fn par_extend<I>(&mut self, par_iter: I) where I: IntoParallelIterator<Item = T>, { // See the vec_collect benchmarks in rayon-demo for different strategies. let par_iter = par_iter.into_par_iter(); match par_iter.opt_len() { Some(len) => { // When Rust gets specialization, we can get here for indexed iterators // without relying on `opt_len`. Until then, `special_extend()` fakes // an unindexed mode on the promise that `opt_len()` is accurate. special_extend(par_iter, len, self); } None => { // This works like `extend`, but `Vec::append` is more efficient. let list = super::extend::collect(par_iter); self.reserve(super::extend::len(&list)); for mut vec in list { self.append(&mut vec); } } } } }