1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
/// The protocol compiler can output a FileDescriptorSet containing the .proto /// files it parses. #[derive(Clone, PartialEq, ::prost::Message)] pub struct FileDescriptorSet { #[prost(message, repeated, tag="1")] pub file: ::std::vec::Vec<FileDescriptorProto>, } /// Describes a complete .proto file. #[derive(Clone, PartialEq, ::prost::Message)] pub struct FileDescriptorProto { /// file name, relative to root of source tree #[prost(string, optional, tag="1")] pub name: ::std::option::Option<std::string::String>, /// e.g. "foo", "foo.bar", etc. #[prost(string, optional, tag="2")] pub package: ::std::option::Option<std::string::String>, /// Names of files imported by this file. #[prost(string, repeated, tag="3")] pub dependency: ::std::vec::Vec<std::string::String>, /// Indexes of the public imported files in the dependency list above. #[prost(int32, repeated, packed="false", tag="10")] pub public_dependency: ::std::vec::Vec<i32>, /// Indexes of the weak imported files in the dependency list. /// For Google-internal migration only. Do not use. #[prost(int32, repeated, packed="false", tag="11")] pub weak_dependency: ::std::vec::Vec<i32>, /// All top-level definitions in this file. #[prost(message, repeated, tag="4")] pub message_type: ::std::vec::Vec<DescriptorProto>, #[prost(message, repeated, tag="5")] pub enum_type: ::std::vec::Vec<EnumDescriptorProto>, #[prost(message, repeated, tag="6")] pub service: ::std::vec::Vec<ServiceDescriptorProto>, #[prost(message, repeated, tag="7")] pub extension: ::std::vec::Vec<FieldDescriptorProto>, #[prost(message, optional, tag="8")] pub options: ::std::option::Option<FileOptions>, /// This field contains optional information about the original source code. /// You may safely remove this entire field without harming runtime /// functionality of the descriptors -- the information is needed only by /// development tools. #[prost(message, optional, tag="9")] pub source_code_info: ::std::option::Option<SourceCodeInfo>, /// The syntax of the proto file. /// The supported values are "proto2" and "proto3". #[prost(string, optional, tag="12")] pub syntax: ::std::option::Option<std::string::String>, } /// Describes a message type. #[derive(Clone, PartialEq, ::prost::Message)] pub struct DescriptorProto { #[prost(string, optional, tag="1")] pub name: ::std::option::Option<std::string::String>, #[prost(message, repeated, tag="2")] pub field: ::std::vec::Vec<FieldDescriptorProto>, #[prost(message, repeated, tag="6")] pub extension: ::std::vec::Vec<FieldDescriptorProto>, #[prost(message, repeated, tag="3")] pub nested_type: ::std::vec::Vec<DescriptorProto>, #[prost(message, repeated, tag="4")] pub enum_type: ::std::vec::Vec<EnumDescriptorProto>, #[prost(message, repeated, tag="5")] pub extension_range: ::std::vec::Vec<descriptor_proto::ExtensionRange>, #[prost(message, repeated, tag="8")] pub oneof_decl: ::std::vec::Vec<OneofDescriptorProto>, #[prost(message, optional, tag="7")] pub options: ::std::option::Option<MessageOptions>, #[prost(message, repeated, tag="9")] pub reserved_range: ::std::vec::Vec<descriptor_proto::ReservedRange>, /// Reserved field names, which may not be used by fields in the same message. /// A given name may only be reserved once. #[prost(string, repeated, tag="10")] pub reserved_name: ::std::vec::Vec<std::string::String>, } pub mod descriptor_proto { #[derive(Clone, PartialEq, ::prost::Message)] pub struct ExtensionRange { /// Inclusive. #[prost(int32, optional, tag="1")] pub start: ::std::option::Option<i32>, /// Exclusive. #[prost(int32, optional, tag="2")] pub end: ::std::option::Option<i32>, #[prost(message, optional, tag="3")] pub options: ::std::option::Option<super::ExtensionRangeOptions>, } /// Range of reserved tag numbers. Reserved tag numbers may not be used by /// fields or extension ranges in the same message. Reserved ranges may /// not overlap. #[derive(Clone, PartialEq, ::prost::Message)] pub struct ReservedRange { /// Inclusive. #[prost(int32, optional, tag="1")] pub start: ::std::option::Option<i32>, /// Exclusive. #[prost(int32, optional, tag="2")] pub end: ::std::option::Option<i32>, } } #[derive(Clone, PartialEq, ::prost::Message)] pub struct ExtensionRangeOptions { /// The parser stores options it doesn't recognize here. See above. #[prost(message, repeated, tag="999")] pub uninterpreted_option: ::std::vec::Vec<UninterpretedOption>, } /// Describes a field within a message. #[derive(Clone, PartialEq, ::prost::Message)] pub struct FieldDescriptorProto { #[prost(string, optional, tag="1")] pub name: ::std::option::Option<std::string::String>, #[prost(int32, optional, tag="3")] pub number: ::std::option::Option<i32>, #[prost(enumeration="field_descriptor_proto::Label", optional, tag="4")] pub label: ::std::option::Option<i32>, /// If type_name is set, this need not be set. If both this and type_name /// are set, this must be one of TYPE_ENUM, TYPE_MESSAGE or TYPE_GROUP. #[prost(enumeration="field_descriptor_proto::Type", optional, tag="5")] pub r#type: ::std::option::Option<i32>, /// For message and enum types, this is the name of the type. If the name /// starts with a '.', it is fully-qualified. Otherwise, C++-like scoping /// rules are used to find the type (i.e. first the nested types within this /// message are searched, then within the parent, on up to the root /// namespace). #[prost(string, optional, tag="6")] pub type_name: ::std::option::Option<std::string::String>, /// For extensions, this is the name of the type being extended. It is /// resolved in the same manner as type_name. #[prost(string, optional, tag="2")] pub extendee: ::std::option::Option<std::string::String>, /// For numeric types, contains the original text representation of the value. /// For booleans, "true" or "false". /// For strings, contains the default text contents (not escaped in any way). /// For bytes, contains the C escaped value. All bytes >= 128 are escaped. /// TODO(kenton): Base-64 encode? #[prost(string, optional, tag="7")] pub default_value: ::std::option::Option<std::string::String>, /// If set, gives the index of a oneof in the containing type's oneof_decl /// list. This field is a member of that oneof. #[prost(int32, optional, tag="9")] pub oneof_index: ::std::option::Option<i32>, /// JSON name of this field. The value is set by protocol compiler. If the /// user has set a "json_name" option on this field, that option's value /// will be used. Otherwise, it's deduced from the field's name by converting /// it to camelCase. #[prost(string, optional, tag="10")] pub json_name: ::std::option::Option<std::string::String>, #[prost(message, optional, tag="8")] pub options: ::std::option::Option<FieldOptions>, } pub mod field_descriptor_proto { #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum Type { /// 0 is reserved for errors. /// Order is weird for historical reasons. Double = 1, Float = 2, /// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT64 if /// negative values are likely. Int64 = 3, Uint64 = 4, /// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT32 if /// negative values are likely. Int32 = 5, Fixed64 = 6, Fixed32 = 7, Bool = 8, String = 9, /// Tag-delimited aggregate. /// Group type is deprecated and not supported in proto3. However, Proto3 /// implementations should still be able to parse the group wire format and /// treat group fields as unknown fields. Group = 10, /// Length-delimited aggregate. Message = 11, /// New in version 2. Bytes = 12, Uint32 = 13, Enum = 14, Sfixed32 = 15, Sfixed64 = 16, /// Uses ZigZag encoding. Sint32 = 17, /// Uses ZigZag encoding. Sint64 = 18, } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum Label { /// 0 is reserved for errors Optional = 1, Required = 2, Repeated = 3, } } /// Describes a oneof. #[derive(Clone, PartialEq, ::prost::Message)] pub struct OneofDescriptorProto { #[prost(string, optional, tag="1")] pub name: ::std::option::Option<std::string::String>, #[prost(message, optional, tag="2")] pub options: ::std::option::Option<OneofOptions>, } /// Describes an enum type. #[derive(Clone, PartialEq, ::prost::Message)] pub struct EnumDescriptorProto { #[prost(string, optional, tag="1")] pub name: ::std::option::Option<std::string::String>, #[prost(message, repeated, tag="2")] pub value: ::std::vec::Vec<EnumValueDescriptorProto>, #[prost(message, optional, tag="3")] pub options: ::std::option::Option<EnumOptions>, /// Range of reserved numeric values. Reserved numeric values may not be used /// by enum values in the same enum declaration. Reserved ranges may not /// overlap. #[prost(message, repeated, tag="4")] pub reserved_range: ::std::vec::Vec<enum_descriptor_proto::EnumReservedRange>, /// Reserved enum value names, which may not be reused. A given name may only /// be reserved once. #[prost(string, repeated, tag="5")] pub reserved_name: ::std::vec::Vec<std::string::String>, } pub mod enum_descriptor_proto { /// Range of reserved numeric values. Reserved values may not be used by /// entries in the same enum. Reserved ranges may not overlap. /// /// Note that this is distinct from DescriptorProto.ReservedRange in that it /// is inclusive such that it can appropriately represent the entire int32 /// domain. #[derive(Clone, PartialEq, ::prost::Message)] pub struct EnumReservedRange { /// Inclusive. #[prost(int32, optional, tag="1")] pub start: ::std::option::Option<i32>, /// Inclusive. #[prost(int32, optional, tag="2")] pub end: ::std::option::Option<i32>, } } /// Describes a value within an enum. #[derive(Clone, PartialEq, ::prost::Message)] pub struct EnumValueDescriptorProto { #[prost(string, optional, tag="1")] pub name: ::std::option::Option<std::string::String>, #[prost(int32, optional, tag="2")] pub number: ::std::option::Option<i32>, #[prost(message, optional, tag="3")] pub options: ::std::option::Option<EnumValueOptions>, } /// Describes a service. #[derive(Clone, PartialEq, ::prost::Message)] pub struct ServiceDescriptorProto { #[prost(string, optional, tag="1")] pub name: ::std::option::Option<std::string::String>, #[prost(message, repeated, tag="2")] pub method: ::std::vec::Vec<MethodDescriptorProto>, #[prost(message, optional, tag="3")] pub options: ::std::option::Option<ServiceOptions>, } /// Describes a method of a service. #[derive(Clone, PartialEq, ::prost::Message)] pub struct MethodDescriptorProto { #[prost(string, optional, tag="1")] pub name: ::std::option::Option<std::string::String>, /// Input and output type names. These are resolved in the same way as /// FieldDescriptorProto.type_name, but must refer to a message type. #[prost(string, optional, tag="2")] pub input_type: ::std::option::Option<std::string::String>, #[prost(string, optional, tag="3")] pub output_type: ::std::option::Option<std::string::String>, #[prost(message, optional, tag="4")] pub options: ::std::option::Option<MethodOptions>, /// Identifies if client streams multiple client messages #[prost(bool, optional, tag="5", default="false")] pub client_streaming: ::std::option::Option<bool>, /// Identifies if server streams multiple server messages #[prost(bool, optional, tag="6", default="false")] pub server_streaming: ::std::option::Option<bool>, } // =================================================================== // Options // Each of the definitions above may have "options" attached. These are // just annotations which may cause code to be generated slightly differently // or may contain hints for code that manipulates protocol messages. // // Clients may define custom options as extensions of the *Options messages. // These extensions may not yet be known at parsing time, so the parser cannot // store the values in them. Instead it stores them in a field in the *Options // message called uninterpreted_option. This field must have the same name // across all *Options messages. We then use this field to populate the // extensions when we build a descriptor, at which point all protos have been // parsed and so all extensions are known. // // Extension numbers for custom options may be chosen as follows: // * For options which will only be used within a single application or // organization, or for experimental options, use field numbers 50000 // through 99999. It is up to you to ensure that you do not use the // same number for multiple options. // * For options which will be published and used publicly by multiple // independent entities, e-mail [email protected] // to reserve extension numbers. Simply provide your project name (e.g. // Objective-C plugin) and your project website (if available) -- there's no // need to explain how you intend to use them. Usually you only need one // extension number. You can declare multiple options with only one extension // number by putting them in a sub-message. See the Custom Options section of // the docs for examples: // https://developers.google.com/protocol-buffers/docs/proto#options // If this turns out to be popular, a web service will be set up // to automatically assign option numbers. #[derive(Clone, PartialEq, ::prost::Message)] pub struct FileOptions { /// Sets the Java package where classes generated from this .proto will be /// placed. By default, the proto package is used, but this is often /// inappropriate because proto packages do not normally start with backwards /// domain names. #[prost(string, optional, tag="1")] pub java_package: ::std::option::Option<std::string::String>, /// If set, all the classes from the .proto file are wrapped in a single /// outer class with the given name. This applies to both Proto1 /// (equivalent to the old "--one_java_file" option) and Proto2 (where /// a .proto always translates to a single class, but you may want to /// explicitly choose the class name). #[prost(string, optional, tag="8")] pub java_outer_classname: ::std::option::Option<std::string::String>, /// If set true, then the Java code generator will generate a separate .java /// file for each top-level message, enum, and service defined in the .proto /// file. Thus, these types will *not* be nested inside the outer class /// named by java_outer_classname. However, the outer class will still be /// generated to contain the file's getDescriptor() method as well as any /// top-level extensions defined in the file. #[prost(bool, optional, tag="10", default="false")] pub java_multiple_files: ::std::option::Option<bool>, /// This option does nothing. #[prost(bool, optional, tag="20")] pub java_generate_equals_and_hash: ::std::option::Option<bool>, /// If set true, then the Java2 code generator will generate code that /// throws an exception whenever an attempt is made to assign a non-UTF-8 /// byte sequence to a string field. /// Message reflection will do the same. /// However, an extension field still accepts non-UTF-8 byte sequences. /// This option has no effect on when used with the lite runtime. #[prost(bool, optional, tag="27", default="false")] pub java_string_check_utf8: ::std::option::Option<bool>, #[prost(enumeration="file_options::OptimizeMode", optional, tag="9", default="Speed")] pub optimize_for: ::std::option::Option<i32>, /// Sets the Go package where structs generated from this .proto will be /// placed. If omitted, the Go package will be derived from the following: /// - The basename of the package import path, if provided. /// - Otherwise, the package statement in the .proto file, if present. /// - Otherwise, the basename of the .proto file, without extension. #[prost(string, optional, tag="11")] pub go_package: ::std::option::Option<std::string::String>, /// Should generic services be generated in each language? "Generic" services /// are not specific to any particular RPC system. They are generated by the /// main code generators in each language (without additional plugins). /// Generic services were the only kind of service generation supported by /// early versions of google.protobuf. /// /// Generic services are now considered deprecated in favor of using plugins /// that generate code specific to your particular RPC system. Therefore, /// these default to false. Old code which depends on generic services should /// explicitly set them to true. #[prost(bool, optional, tag="16", default="false")] pub cc_generic_services: ::std::option::Option<bool>, #[prost(bool, optional, tag="17", default="false")] pub java_generic_services: ::std::option::Option<bool>, #[prost(bool, optional, tag="18", default="false")] pub py_generic_services: ::std::option::Option<bool>, #[prost(bool, optional, tag="42", default="false")] pub php_generic_services: ::std::option::Option<bool>, /// Is this file deprecated? /// Depending on the target platform, this can emit Deprecated annotations /// for everything in the file, or it will be completely ignored; in the very /// least, this is a formalization for deprecating files. #[prost(bool, optional, tag="23", default="false")] pub deprecated: ::std::option::Option<bool>, /// Enables the use of arenas for the proto messages in this file. This applies /// only to generated classes for C++. #[prost(bool, optional, tag="31", default="false")] pub cc_enable_arenas: ::std::option::Option<bool>, /// Sets the objective c class prefix which is prepended to all objective c /// generated classes from this .proto. There is no default. #[prost(string, optional, tag="36")] pub objc_class_prefix: ::std::option::Option<std::string::String>, /// Namespace for generated classes; defaults to the package. #[prost(string, optional, tag="37")] pub csharp_namespace: ::std::option::Option<std::string::String>, /// By default Swift generators will take the proto package and CamelCase it /// replacing '.' with underscore and use that to prefix the types/symbols /// defined. When this options is provided, they will use this value instead /// to prefix the types/symbols defined. #[prost(string, optional, tag="39")] pub swift_prefix: ::std::option::Option<std::string::String>, /// Sets the php class prefix which is prepended to all php generated classes /// from this .proto. Default is empty. #[prost(string, optional, tag="40")] pub php_class_prefix: ::std::option::Option<std::string::String>, /// Use this option to change the namespace of php generated classes. Default /// is empty. When this option is empty, the package name will be used for /// determining the namespace. #[prost(string, optional, tag="41")] pub php_namespace: ::std::option::Option<std::string::String>, /// Use this option to change the namespace of php generated metadata classes. /// Default is empty. When this option is empty, the proto file name will be /// used for determining the namespace. #[prost(string, optional, tag="44")] pub php_metadata_namespace: ::std::option::Option<std::string::String>, /// Use this option to change the package of ruby generated classes. Default /// is empty. When this option is not set, the package name will be used for /// determining the ruby package. #[prost(string, optional, tag="45")] pub ruby_package: ::std::option::Option<std::string::String>, /// The parser stores options it doesn't recognize here. /// See the documentation for the "Options" section above. #[prost(message, repeated, tag="999")] pub uninterpreted_option: ::std::vec::Vec<UninterpretedOption>, } pub mod file_options { /// Generated classes can be optimized for speed or code size. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum OptimizeMode { /// Generate complete code for parsing, serialization, Speed = 1, /// etc. /// /// Use ReflectionOps to implement these methods. CodeSize = 2, /// Generate code using MessageLite and the lite runtime. LiteRuntime = 3, } } #[derive(Clone, PartialEq, ::prost::Message)] pub struct MessageOptions { /// Set true to use the old proto1 MessageSet wire format for extensions. /// This is provided for backwards-compatibility with the MessageSet wire /// format. You should not use this for any other reason: It's less /// efficient, has fewer features, and is more complicated. /// /// The message must be defined exactly as follows: /// message Foo { /// option message_set_wire_format = true; /// extensions 4 to max; /// } /// Note that the message cannot have any defined fields; MessageSets only /// have extensions. /// /// All extensions of your type must be singular messages; e.g. they cannot /// be int32s, enums, or repeated messages. /// /// Because this is an option, the above two restrictions are not enforced by /// the protocol compiler. #[prost(bool, optional, tag="1", default="false")] pub message_set_wire_format: ::std::option::Option<bool>, /// Disables the generation of the standard "descriptor()" accessor, which can /// conflict with a field of the same name. This is meant to make migration /// from proto1 easier; new code should avoid fields named "descriptor". #[prost(bool, optional, tag="2", default="false")] pub no_standard_descriptor_accessor: ::std::option::Option<bool>, /// Is this message deprecated? /// Depending on the target platform, this can emit Deprecated annotations /// for the message, or it will be completely ignored; in the very least, /// this is a formalization for deprecating messages. #[prost(bool, optional, tag="3", default="false")] pub deprecated: ::std::option::Option<bool>, /// Whether the message is an automatically generated map entry type for the /// maps field. /// /// For maps fields: /// map<KeyType, ValueType> map_field = 1; /// The parsed descriptor looks like: /// message MapFieldEntry { /// option map_entry = true; /// optional KeyType key = 1; /// optional ValueType value = 2; /// } /// repeated MapFieldEntry map_field = 1; /// /// Implementations may choose not to generate the map_entry=true message, but /// use a native map in the target language to hold the keys and values. /// The reflection APIs in such implementations still need to work as /// if the field is a repeated message field. /// /// NOTE: Do not set the option in .proto files. Always use the maps syntax /// instead. The option should only be implicitly set by the proto compiler /// parser. #[prost(bool, optional, tag="7")] pub map_entry: ::std::option::Option<bool>, /// The parser stores options it doesn't recognize here. See above. #[prost(message, repeated, tag="999")] pub uninterpreted_option: ::std::vec::Vec<UninterpretedOption>, } #[derive(Clone, PartialEq, ::prost::Message)] pub struct FieldOptions { /// The ctype option instructs the C++ code generator to use a different /// representation of the field than it normally would. See the specific /// options below. This option is not yet implemented in the open source /// release -- sorry, we'll try to include it in a future version! #[prost(enumeration="field_options::CType", optional, tag="1", default="String")] pub ctype: ::std::option::Option<i32>, /// The packed option can be enabled for repeated primitive fields to enable /// a more efficient representation on the wire. Rather than repeatedly /// writing the tag and type for each element, the entire array is encoded as /// a single length-delimited blob. In proto3, only explicit setting it to /// false will avoid using packed encoding. #[prost(bool, optional, tag="2")] pub packed: ::std::option::Option<bool>, /// The jstype option determines the JavaScript type used for values of the /// field. The option is permitted only for 64 bit integral and fixed types /// (int64, uint64, sint64, fixed64, sfixed64). A field with jstype JS_STRING /// is represented as JavaScript string, which avoids loss of precision that /// can happen when a large value is converted to a floating point JavaScript. /// Specifying JS_NUMBER for the jstype causes the generated JavaScript code to /// use the JavaScript "number" type. The behavior of the default option /// JS_NORMAL is implementation dependent. /// /// This option is an enum to permit additional types to be added, e.g. /// goog.math.Integer. #[prost(enumeration="field_options::JsType", optional, tag="6", default="JsNormal")] pub jstype: ::std::option::Option<i32>, /// Should this field be parsed lazily? Lazy applies only to message-type /// fields. It means that when the outer message is initially parsed, the /// inner message's contents will not be parsed but instead stored in encoded /// form. The inner message will actually be parsed when it is first accessed. /// /// This is only a hint. Implementations are free to choose whether to use /// eager or lazy parsing regardless of the value of this option. However, /// setting this option true suggests that the protocol author believes that /// using lazy parsing on this field is worth the additional bookkeeping /// overhead typically needed to implement it. /// /// This option does not affect the public interface of any generated code; /// all method signatures remain the same. Furthermore, thread-safety of the /// interface is not affected by this option; const methods remain safe to /// call from multiple threads concurrently, while non-const methods continue /// to require exclusive access. /// /// /// Note that implementations may choose not to check required fields within /// a lazy sub-message. That is, calling IsInitialized() on the outer message /// may return true even if the inner message has missing required fields. /// This is necessary because otherwise the inner message would have to be /// parsed in order to perform the check, defeating the purpose of lazy /// parsing. An implementation which chooses not to check required fields /// must be consistent about it. That is, for any particular sub-message, the /// implementation must either *always* check its required fields, or *never* /// check its required fields, regardless of whether or not the message has /// been parsed. #[prost(bool, optional, tag="5", default="false")] pub lazy: ::std::option::Option<bool>, /// Is this field deprecated? /// Depending on the target platform, this can emit Deprecated annotations /// for accessors, or it will be completely ignored; in the very least, this /// is a formalization for deprecating fields. #[prost(bool, optional, tag="3", default="false")] pub deprecated: ::std::option::Option<bool>, /// For Google-internal migration only. Do not use. #[prost(bool, optional, tag="10", default="false")] pub weak: ::std::option::Option<bool>, /// The parser stores options it doesn't recognize here. See above. #[prost(message, repeated, tag="999")] pub uninterpreted_option: ::std::vec::Vec<UninterpretedOption>, } pub mod field_options { #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum CType { /// Default mode. String = 0, Cord = 1, StringPiece = 2, } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum JsType { /// Use the default type. JsNormal = 0, /// Use JavaScript strings. JsString = 1, /// Use JavaScript numbers. JsNumber = 2, } } #[derive(Clone, PartialEq, ::prost::Message)] pub struct OneofOptions { /// The parser stores options it doesn't recognize here. See above. #[prost(message, repeated, tag="999")] pub uninterpreted_option: ::std::vec::Vec<UninterpretedOption>, } #[derive(Clone, PartialEq, ::prost::Message)] pub struct EnumOptions { /// Set this option to true to allow mapping different tag names to the same /// value. #[prost(bool, optional, tag="2")] pub allow_alias: ::std::option::Option<bool>, /// Is this enum deprecated? /// Depending on the target platform, this can emit Deprecated annotations /// for the enum, or it will be completely ignored; in the very least, this /// is a formalization for deprecating enums. #[prost(bool, optional, tag="3", default="false")] pub deprecated: ::std::option::Option<bool>, /// The parser stores options it doesn't recognize here. See above. #[prost(message, repeated, tag="999")] pub uninterpreted_option: ::std::vec::Vec<UninterpretedOption>, } #[derive(Clone, PartialEq, ::prost::Message)] pub struct EnumValueOptions { /// Is this enum value deprecated? /// Depending on the target platform, this can emit Deprecated annotations /// for the enum value, or it will be completely ignored; in the very least, /// this is a formalization for deprecating enum values. #[prost(bool, optional, tag="1", default="false")] pub deprecated: ::std::option::Option<bool>, /// The parser stores options it doesn't recognize here. See above. #[prost(message, repeated, tag="999")] pub uninterpreted_option: ::std::vec::Vec<UninterpretedOption>, } #[derive(Clone, PartialEq, ::prost::Message)] pub struct ServiceOptions { // Note: Field numbers 1 through 32 are reserved for Google's internal RPC // framework. We apologize for hoarding these numbers to ourselves, but // we were already using them long before we decided to release Protocol // Buffers. /// Is this service deprecated? /// Depending on the target platform, this can emit Deprecated annotations /// for the service, or it will be completely ignored; in the very least, /// this is a formalization for deprecating services. #[prost(bool, optional, tag="33", default="false")] pub deprecated: ::std::option::Option<bool>, /// The parser stores options it doesn't recognize here. See above. #[prost(message, repeated, tag="999")] pub uninterpreted_option: ::std::vec::Vec<UninterpretedOption>, } #[derive(Clone, PartialEq, ::prost::Message)] pub struct MethodOptions { // Note: Field numbers 1 through 32 are reserved for Google's internal RPC // framework. We apologize for hoarding these numbers to ourselves, but // we were already using them long before we decided to release Protocol // Buffers. /// Is this method deprecated? /// Depending on the target platform, this can emit Deprecated annotations /// for the method, or it will be completely ignored; in the very least, /// this is a formalization for deprecating methods. #[prost(bool, optional, tag="33", default="false")] pub deprecated: ::std::option::Option<bool>, #[prost(enumeration="method_options::IdempotencyLevel", optional, tag="34", default="IdempotencyUnknown")] pub idempotency_level: ::std::option::Option<i32>, /// The parser stores options it doesn't recognize here. See above. #[prost(message, repeated, tag="999")] pub uninterpreted_option: ::std::vec::Vec<UninterpretedOption>, } pub mod method_options { /// Is this method side-effect-free (or safe in HTTP parlance), or idempotent, /// or neither? HTTP based RPC implementation may choose GET verb for safe /// methods, and PUT verb for idempotent methods instead of the default POST. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum IdempotencyLevel { IdempotencyUnknown = 0, /// implies idempotent NoSideEffects = 1, /// idempotent, but may have side effects Idempotent = 2, } } /// A message representing a option the parser does not recognize. This only /// appears in options protos created by the compiler::Parser class. /// DescriptorPool resolves these when building Descriptor objects. Therefore, /// options protos in descriptor objects (e.g. returned by Descriptor::options(), /// or produced by Descriptor::CopyTo()) will never have UninterpretedOptions /// in them. #[derive(Clone, PartialEq, ::prost::Message)] pub struct UninterpretedOption { #[prost(message, repeated, tag="2")] pub name: ::std::vec::Vec<uninterpreted_option::NamePart>, /// The value of the uninterpreted option, in whatever type the tokenizer /// identified it as during parsing. Exactly one of these should be set. #[prost(string, optional, tag="3")] pub identifier_value: ::std::option::Option<std::string::String>, #[prost(uint64, optional, tag="4")] pub positive_int_value: ::std::option::Option<u64>, #[prost(int64, optional, tag="5")] pub negative_int_value: ::std::option::Option<i64>, #[prost(double, optional, tag="6")] pub double_value: ::std::option::Option<f64>, #[prost(bytes, optional, tag="7")] pub string_value: ::std::option::Option<std::vec::Vec<u8>>, #[prost(string, optional, tag="8")] pub aggregate_value: ::std::option::Option<std::string::String>, } pub mod uninterpreted_option { /// The name of the uninterpreted option. Each string represents a segment in /// a dot-separated name. is_extension is true iff a segment represents an /// extension (denoted with parentheses in options specs in .proto files). /// E.g.,{ ["foo", false], ["bar.baz", true], ["qux", false] } represents /// "foo.(bar.baz).qux". #[derive(Clone, PartialEq, ::prost::Message)] pub struct NamePart { #[prost(string, required, tag="1")] pub name_part: std::string::String, #[prost(bool, required, tag="2")] pub is_extension: bool, } } // =================================================================== // Optional source code info /// Encapsulates information about the original source file from which a /// FileDescriptorProto was generated. #[derive(Clone, PartialEq, ::prost::Message)] pub struct SourceCodeInfo { /// A Location identifies a piece of source code in a .proto file which /// corresponds to a particular definition. This information is intended /// to be useful to IDEs, code indexers, documentation generators, and similar /// tools. /// /// For example, say we have a file like: /// message Foo { /// optional string foo = 1; /// } /// Let's look at just the field definition: /// optional string foo = 1; /// ^ ^^ ^^ ^ ^^^ /// a bc de f ghi /// We have the following locations: /// span path represents /// [a,i) [ 4, 0, 2, 0 ] The whole field definition. /// [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). /// [c,d) [ 4, 0, 2, 0, 5 ] The type (string). /// [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). /// [g,h) [ 4, 0, 2, 0, 3 ] The number (1). /// /// Notes: /// - A location may refer to a repeated field itself (i.e. not to any /// particular index within it). This is used whenever a set of elements are /// logically enclosed in a single code segment. For example, an entire /// extend block (possibly containing multiple extension definitions) will /// have an outer location whose path refers to the "extensions" repeated /// field without an index. /// - Multiple locations may have the same path. This happens when a single /// logical declaration is spread out across multiple places. The most /// obvious example is the "extend" block again -- there may be multiple /// extend blocks in the same scope, each of which will have the same path. /// - A location's span is not always a subset of its parent's span. For /// example, the "extendee" of an extension declaration appears at the /// beginning of the "extend" block and is shared by all extensions within /// the block. /// - Just because a location's span is a subset of some other location's span /// does not mean that it is a descendant. For example, a "group" defines /// both a type and a field in a single declaration. Thus, the locations /// corresponding to the type and field and their components will overlap. /// - Code which tries to interpret locations should probably be designed to /// ignore those that it doesn't understand, as more types of locations could /// be recorded in the future. #[prost(message, repeated, tag="1")] pub location: ::std::vec::Vec<source_code_info::Location>, } pub mod source_code_info { #[derive(Clone, PartialEq, ::prost::Message)] pub struct Location { /// Identifies which part of the FileDescriptorProto was defined at this /// location. /// /// Each element is a field number or an index. They form a path from /// the root FileDescriptorProto to the place where the definition. For /// example, this path: /// [ 4, 3, 2, 7, 1 ] /// refers to: /// file.message_type(3) // 4, 3 /// .field(7) // 2, 7 /// .name() // 1 /// This is because FileDescriptorProto.message_type has field number 4: /// repeated DescriptorProto message_type = 4; /// and DescriptorProto.field has field number 2: /// repeated FieldDescriptorProto field = 2; /// and FieldDescriptorProto.name has field number 1: /// optional string name = 1; /// /// Thus, the above path gives the location of a field name. If we removed /// the last element: /// [ 4, 3, 2, 7 ] /// this path refers to the whole field declaration (from the beginning /// of the label to the terminating semicolon). #[prost(int32, repeated, tag="1")] pub path: ::std::vec::Vec<i32>, /// Always has exactly three or four elements: start line, start column, /// end line (optional, otherwise assumed same as start line), end column. /// These are packed into a single field for efficiency. Note that line /// and column numbers are zero-based -- typically you will want to add /// 1 to each before displaying to a user. #[prost(int32, repeated, tag="2")] pub span: ::std::vec::Vec<i32>, /// If this SourceCodeInfo represents a complete declaration, these are any /// comments appearing before and after the declaration which appear to be /// attached to the declaration. /// /// A series of line comments appearing on consecutive lines, with no other /// tokens appearing on those lines, will be treated as a single comment. /// /// leading_detached_comments will keep paragraphs of comments that appear /// before (but not connected to) the current element. Each paragraph, /// separated by empty lines, will be one comment element in the repeated /// field. /// /// Only the comment content is provided; comment markers (e.g. //) are /// stripped out. For block comments, leading whitespace and an asterisk /// will be stripped from the beginning of each line other than the first. /// Newlines are included in the output. /// /// Examples: /// /// optional int32 foo = 1; // Comment attached to foo. /// // Comment attached to bar. /// optional int32 bar = 2; /// /// optional string baz = 3; /// // Comment attached to baz. /// // Another line attached to baz. /// /// // Comment attached to qux. /// // /// // Another line attached to qux. /// optional double qux = 4; /// /// // Detached comment for corge. This is not leading or trailing comments /// // to qux or corge because there are blank lines separating it from /// // both. /// /// // Detached comment for corge paragraph 2. /// /// optional string corge = 5; /// /* Block comment attached /// * to corge. Leading asterisks /// * will be removed. */ /// /* Block comment attached to /// * grault. */ /// optional int32 grault = 6; /// /// // ignored detached comments. #[prost(string, optional, tag="3")] pub leading_comments: ::std::option::Option<std::string::String>, #[prost(string, optional, tag="4")] pub trailing_comments: ::std::option::Option<std::string::String>, #[prost(string, repeated, tag="6")] pub leading_detached_comments: ::std::vec::Vec<std::string::String>, } } /// Describes the relationship between generated code and its original source /// file. A GeneratedCodeInfo message is associated with only one generated /// source file, but may contain references to different source .proto files. #[derive(Clone, PartialEq, ::prost::Message)] pub struct GeneratedCodeInfo { /// An Annotation connects some span of text in generated code to an element /// of its generating .proto file. #[prost(message, repeated, tag="1")] pub annotation: ::std::vec::Vec<generated_code_info::Annotation>, } pub mod generated_code_info { #[derive(Clone, PartialEq, ::prost::Message)] pub struct Annotation { /// Identifies the element in the original source .proto file. This field /// is formatted the same as SourceCodeInfo.Location.path. #[prost(int32, repeated, tag="1")] pub path: ::std::vec::Vec<i32>, /// Identifies the filesystem path to the original source .proto. #[prost(string, optional, tag="2")] pub source_file: ::std::option::Option<std::string::String>, /// Identifies the starting offset in bytes in the generated code /// that relates to the identified object. #[prost(int32, optional, tag="3")] pub begin: ::std::option::Option<i32>, /// Identifies the ending offset in bytes in the generated code that /// relates to the identified offset. The end offset should be one past /// the last relevant byte (so the length of the text = end - begin). #[prost(int32, optional, tag="4")] pub end: ::std::option::Option<i32>, } } /// `Any` contains an arbitrary serialized protocol buffer message along with a /// URL that describes the type of the serialized message. /// /// Protobuf library provides support to pack/unpack Any values in the form /// of utility functions or additional generated methods of the Any type. /// /// Example 1: Pack and unpack a message in C++. /// /// Foo foo = ...; /// Any any; /// any.PackFrom(foo); /// ... /// if (any.UnpackTo(&foo)) { /// ... /// } /// /// Example 2: Pack and unpack a message in Java. /// /// Foo foo = ...; /// Any any = Any.pack(foo); /// ... /// if (any.is(Foo.class)) { /// foo = any.unpack(Foo.class); /// } /// /// Example 3: Pack and unpack a message in Python. /// /// foo = Foo(...) /// any = Any() /// any.Pack(foo) /// ... /// if any.Is(Foo.DESCRIPTOR): /// any.Unpack(foo) /// ... /// /// Example 4: Pack and unpack a message in Go /// /// foo := &pb.Foo{...} /// any, err := ptypes.MarshalAny(foo) /// ... /// foo := &pb.Foo{} /// if err := ptypes.UnmarshalAny(any, foo); err != nil { /// ... /// } /// /// The pack methods provided by protobuf library will by default use /// 'type.googleapis.com/full.type.name' as the type URL and the unpack /// methods only use the fully qualified type name after the last '/' /// in the type URL, for example "foo.bar.com/x/y.z" will yield type /// name "y.z". /// /// /// JSON /// ==== /// The JSON representation of an `Any` value uses the regular /// representation of the deserialized, embedded message, with an /// additional field `@type` which contains the type URL. Example: /// /// package google.profile; /// message Person { /// string first_name = 1; /// string last_name = 2; /// } /// /// { /// "@type": "type.googleapis.com/google.profile.Person", /// "firstName": <string>, /// "lastName": <string> /// } /// /// If the embedded message type is well-known and has a custom JSON /// representation, that representation will be embedded adding a field /// `value` which holds the custom JSON in addition to the `@type` /// field. Example (for message [google.protobuf.Duration][]): /// /// { /// "@type": "type.googleapis.com/google.protobuf.Duration", /// "value": "1.212s" /// } /// #[derive(Clone, PartialEq, ::prost::Message)] pub struct Any { /// A URL/resource name that uniquely identifies the type of the serialized /// protocol buffer message. This string must contain at least /// one "/" character. The last segment of the URL's path must represent /// the fully qualified name of the type (as in /// `path/google.protobuf.Duration`). The name should be in a canonical form /// (e.g., leading "." is not accepted). /// /// In practice, teams usually precompile into the binary all types that they /// expect it to use in the context of Any. However, for URLs which use the /// scheme `http`, `https`, or no scheme, one can optionally set up a type /// server that maps type URLs to message definitions as follows: /// /// * If no scheme is provided, `https` is assumed. /// * An HTTP GET on the URL must yield a [google.protobuf.Type][] /// value in binary format, or produce an error. /// * Applications are allowed to cache lookup results based on the /// URL, or have them precompiled into a binary to avoid any /// lookup. Therefore, binary compatibility needs to be preserved /// on changes to types. (Use versioned type names to manage /// breaking changes.) /// /// Note: this functionality is not currently available in the official /// protobuf release, and it is not used for type URLs beginning with /// type.googleapis.com. /// /// Schemes other than `http`, `https` (or the empty scheme) might be /// used with implementation specific semantics. /// #[prost(string, tag="1")] pub type_url: std::string::String, /// Must be a valid serialized protocol buffer of the above specified type. #[prost(bytes, tag="2")] pub value: std::vec::Vec<u8>, } /// `SourceContext` represents information about the source of a /// protobuf element, like the file in which it is defined. #[derive(Clone, PartialEq, ::prost::Message)] pub struct SourceContext { /// The path-qualified name of the .proto file that contained the associated /// protobuf element. For example: `"google/protobuf/source_context.proto"`. #[prost(string, tag="1")] pub file_name: std::string::String, } /// A protocol buffer message type. #[derive(Clone, PartialEq, ::prost::Message)] pub struct Type { /// The fully qualified message name. #[prost(string, tag="1")] pub name: std::string::String, /// The list of fields. #[prost(message, repeated, tag="2")] pub fields: ::std::vec::Vec<Field>, /// The list of types appearing in `oneof` definitions in this type. #[prost(string, repeated, tag="3")] pub oneofs: ::std::vec::Vec<std::string::String>, /// The protocol buffer options. #[prost(message, repeated, tag="4")] pub options: ::std::vec::Vec<Option>, /// The source context. #[prost(message, optional, tag="5")] pub source_context: ::std::option::Option<SourceContext>, /// The source syntax. #[prost(enumeration="Syntax", tag="6")] pub syntax: i32, } /// A single field of a message type. #[derive(Clone, PartialEq, ::prost::Message)] pub struct Field { /// The field type. #[prost(enumeration="field::Kind", tag="1")] pub kind: i32, /// The field cardinality. #[prost(enumeration="field::Cardinality", tag="2")] pub cardinality: i32, /// The field number. #[prost(int32, tag="3")] pub number: i32, /// The field name. #[prost(string, tag="4")] pub name: std::string::String, /// The field type URL, without the scheme, for message or enumeration /// types. Example: `"type.googleapis.com/google.protobuf.Timestamp"`. #[prost(string, tag="6")] pub type_url: std::string::String, /// The index of the field type in `Type.oneofs`, for message or enumeration /// types. The first type has index 1; zero means the type is not in the list. #[prost(int32, tag="7")] pub oneof_index: i32, /// Whether to use alternative packed wire representation. #[prost(bool, tag="8")] pub packed: bool, /// The protocol buffer options. #[prost(message, repeated, tag="9")] pub options: ::std::vec::Vec<Option>, /// The field JSON name. #[prost(string, tag="10")] pub json_name: std::string::String, /// The string value of the default value of this field. Proto2 syntax only. #[prost(string, tag="11")] pub default_value: std::string::String, } pub mod field { /// Basic field types. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum Kind { /// Field type unknown. TypeUnknown = 0, /// Field type double. TypeDouble = 1, /// Field type float. TypeFloat = 2, /// Field type int64. TypeInt64 = 3, /// Field type uint64. TypeUint64 = 4, /// Field type int32. TypeInt32 = 5, /// Field type fixed64. TypeFixed64 = 6, /// Field type fixed32. TypeFixed32 = 7, /// Field type bool. TypeBool = 8, /// Field type string. TypeString = 9, /// Field type group. Proto2 syntax only, and deprecated. TypeGroup = 10, /// Field type message. TypeMessage = 11, /// Field type bytes. TypeBytes = 12, /// Field type uint32. TypeUint32 = 13, /// Field type enum. TypeEnum = 14, /// Field type sfixed32. TypeSfixed32 = 15, /// Field type sfixed64. TypeSfixed64 = 16, /// Field type sint32. TypeSint32 = 17, /// Field type sint64. TypeSint64 = 18, } /// Whether a field is optional, required, or repeated. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum Cardinality { /// For fields with unknown cardinality. Unknown = 0, /// For optional fields. Optional = 1, /// For required fields. Proto2 syntax only. Required = 2, /// For repeated fields. Repeated = 3, } } /// Enum type definition. #[derive(Clone, PartialEq, ::prost::Message)] pub struct Enum { /// Enum type name. #[prost(string, tag="1")] pub name: std::string::String, /// Enum value definitions. #[prost(message, repeated, tag="2")] pub enumvalue: ::std::vec::Vec<EnumValue>, /// Protocol buffer options. #[prost(message, repeated, tag="3")] pub options: ::std::vec::Vec<Option>, /// The source context. #[prost(message, optional, tag="4")] pub source_context: ::std::option::Option<SourceContext>, /// The source syntax. #[prost(enumeration="Syntax", tag="5")] pub syntax: i32, } /// Enum value definition. #[derive(Clone, PartialEq, ::prost::Message)] pub struct EnumValue { /// Enum value name. #[prost(string, tag="1")] pub name: std::string::String, /// Enum value number. #[prost(int32, tag="2")] pub number: i32, /// Protocol buffer options. #[prost(message, repeated, tag="3")] pub options: ::std::vec::Vec<Option>, } /// A protocol buffer option, which can be attached to a message, field, /// enumeration, etc. #[derive(Clone, PartialEq, ::prost::Message)] pub struct Option { /// The option's name. For protobuf built-in options (options defined in /// descriptor.proto), this is the short name. For example, `"map_entry"`. /// For custom options, it should be the fully-qualified name. For example, /// `"google.api.http"`. #[prost(string, tag="1")] pub name: std::string::String, /// The option's value packed in an Any message. If the value is a primitive, /// the corresponding wrapper type defined in google/protobuf/wrappers.proto /// should be used. If the value is an enum, it should be stored as an int32 /// value using the google.protobuf.Int32Value type. #[prost(message, optional, tag="2")] pub value: ::std::option::Option<Any>, } /// The syntax in which a protocol buffer element is defined. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum Syntax { /// Syntax `proto2`. Proto2 = 0, /// Syntax `proto3`. Proto3 = 1, } /// Api is a light-weight descriptor for an API Interface. /// /// Interfaces are also described as "protocol buffer services" in some contexts, /// such as by the "service" keyword in a .proto file, but they are different /// from API Services, which represent a concrete implementation of an interface /// as opposed to simply a description of methods and bindings. They are also /// sometimes simply referred to as "APIs" in other contexts, such as the name of /// this message itself. See https://cloud.google.com/apis/design/glossary for /// detailed terminology. #[derive(Clone, PartialEq, ::prost::Message)] pub struct Api { /// The fully qualified name of this interface, including package name /// followed by the interface's simple name. #[prost(string, tag="1")] pub name: std::string::String, /// The methods of this interface, in unspecified order. #[prost(message, repeated, tag="2")] pub methods: ::std::vec::Vec<Method>, /// Any metadata attached to the interface. #[prost(message, repeated, tag="3")] pub options: ::std::vec::Vec<Option>, /// A version string for this interface. If specified, must have the form /// `major-version.minor-version`, as in `1.10`. If the minor version is /// omitted, it defaults to zero. If the entire version field is empty, the /// major version is derived from the package name, as outlined below. If the /// field is not empty, the version in the package name will be verified to be /// consistent with what is provided here. /// /// The versioning schema uses [semantic /// versioning](http://semver.org) where the major version number /// indicates a breaking change and the minor version an additive, /// non-breaking change. Both version numbers are signals to users /// what to expect from different versions, and should be carefully /// chosen based on the product plan. /// /// The major version is also reflected in the package name of the /// interface, which must end in `v<major-version>`, as in /// `google.feature.v1`. For major versions 0 and 1, the suffix can /// be omitted. Zero major versions must only be used for /// experimental, non-GA interfaces. /// /// #[prost(string, tag="4")] pub version: std::string::String, /// Source context for the protocol buffer service represented by this /// message. #[prost(message, optional, tag="5")] pub source_context: ::std::option::Option<SourceContext>, /// Included interfaces. See [Mixin][]. #[prost(message, repeated, tag="6")] pub mixins: ::std::vec::Vec<Mixin>, /// The source syntax of the service. #[prost(enumeration="Syntax", tag="7")] pub syntax: i32, } /// Method represents a method of an API interface. #[derive(Clone, PartialEq, ::prost::Message)] pub struct Method { /// The simple name of this method. #[prost(string, tag="1")] pub name: std::string::String, /// A URL of the input message type. #[prost(string, tag="2")] pub request_type_url: std::string::String, /// If true, the request is streamed. #[prost(bool, tag="3")] pub request_streaming: bool, /// The URL of the output message type. #[prost(string, tag="4")] pub response_type_url: std::string::String, /// If true, the response is streamed. #[prost(bool, tag="5")] pub response_streaming: bool, /// Any metadata attached to the method. #[prost(message, repeated, tag="6")] pub options: ::std::vec::Vec<Option>, /// The source syntax of this method. #[prost(enumeration="Syntax", tag="7")] pub syntax: i32, } /// Declares an API Interface to be included in this interface. The including /// interface must redeclare all the methods from the included interface, but /// documentation and options are inherited as follows: /// /// - If after comment and whitespace stripping, the documentation /// string of the redeclared method is empty, it will be inherited /// from the original method. /// /// - Each annotation belonging to the service config (http, /// visibility) which is not set in the redeclared method will be /// inherited. /// /// - If an http annotation is inherited, the path pattern will be /// modified as follows. Any version prefix will be replaced by the /// version of the including interface plus the [root][] path if /// specified. /// /// Example of a simple mixin: /// /// package google.acl.v1; /// service AccessControl { /// // Get the underlying ACL object. /// rpc GetAcl(GetAclRequest) returns (Acl) { /// option (google.api.http).get = "/v1/{resource=**}:getAcl"; /// } /// } /// /// package google.storage.v2; /// service Storage { /// rpc GetAcl(GetAclRequest) returns (Acl); /// /// // Get a data record. /// rpc GetData(GetDataRequest) returns (Data) { /// option (google.api.http).get = "/v2/{resource=**}"; /// } /// } /// /// Example of a mixin configuration: /// /// apis: /// - name: google.storage.v2.Storage /// mixins: /// - name: google.acl.v1.AccessControl /// /// The mixin construct implies that all methods in `AccessControl` are /// also declared with same name and request/response types in /// `Storage`. A documentation generator or annotation processor will /// see the effective `Storage.GetAcl` method after inherting /// documentation and annotations as follows: /// /// service Storage { /// // Get the underlying ACL object. /// rpc GetAcl(GetAclRequest) returns (Acl) { /// option (google.api.http).get = "/v2/{resource=**}:getAcl"; /// } /// ... /// } /// /// Note how the version in the path pattern changed from `v1` to `v2`. /// /// If the `root` field in the mixin is specified, it should be a /// relative path under which inherited HTTP paths are placed. Example: /// /// apis: /// - name: google.storage.v2.Storage /// mixins: /// - name: google.acl.v1.AccessControl /// root: acls /// /// This implies the following inherited HTTP annotation: /// /// service Storage { /// // Get the underlying ACL object. /// rpc GetAcl(GetAclRequest) returns (Acl) { /// option (google.api.http).get = "/v2/acls/{resource=**}:getAcl"; /// } /// ... /// } #[derive(Clone, PartialEq, ::prost::Message)] pub struct Mixin { /// The fully qualified name of the interface which is included. #[prost(string, tag="1")] pub name: std::string::String, /// If non-empty specifies a path under which inherited HTTP paths /// are rooted. #[prost(string, tag="2")] pub root: std::string::String, } /// A Duration represents a signed, fixed-length span of time represented /// as a count of seconds and fractions of seconds at nanosecond /// resolution. It is independent of any calendar and concepts like "day" /// or "month". It is related to Timestamp in that the difference between /// two Timestamp values is a Duration and it can be added or subtracted /// from a Timestamp. Range is approximately +-10,000 years. /// /// # Examples /// /// Example 1: Compute Duration from two Timestamps in pseudo code. /// /// Timestamp start = ...; /// Timestamp end = ...; /// Duration duration = ...; /// /// duration.seconds = end.seconds - start.seconds; /// duration.nanos = end.nanos - start.nanos; /// /// if (duration.seconds < 0 && duration.nanos > 0) { /// duration.seconds += 1; /// duration.nanos -= 1000000000; /// } else if (duration.seconds > 0 && duration.nanos < 0) { /// duration.seconds -= 1; /// duration.nanos += 1000000000; /// } /// /// Example 2: Compute Timestamp from Timestamp + Duration in pseudo code. /// /// Timestamp start = ...; /// Duration duration = ...; /// Timestamp end = ...; /// /// end.seconds = start.seconds + duration.seconds; /// end.nanos = start.nanos + duration.nanos; /// /// if (end.nanos < 0) { /// end.seconds -= 1; /// end.nanos += 1000000000; /// } else if (end.nanos >= 1000000000) { /// end.seconds += 1; /// end.nanos -= 1000000000; /// } /// /// Example 3: Compute Duration from datetime.timedelta in Python. /// /// td = datetime.timedelta(days=3, minutes=10) /// duration = Duration() /// duration.FromTimedelta(td) /// /// # JSON Mapping /// /// In JSON format, the Duration type is encoded as a string rather than an /// object, where the string ends in the suffix "s" (indicating seconds) and /// is preceded by the number of seconds, with nanoseconds expressed as /// fractional seconds. For example, 3 seconds with 0 nanoseconds should be /// encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should /// be expressed in JSON format as "3.000000001s", and 3 seconds and 1 /// microsecond should be expressed in JSON format as "3.000001s". /// /// #[derive(Clone, PartialEq, ::prost::Message)] pub struct Duration { /// Signed seconds of the span of time. Must be from -315,576,000,000 /// to +315,576,000,000 inclusive. Note: these bounds are computed from: /// 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years #[prost(int64, tag="1")] pub seconds: i64, /// Signed fractions of a second at nanosecond resolution of the span /// of time. Durations less than one second are represented with a 0 /// `seconds` field and a positive or negative `nanos` field. For durations /// of one second or more, a non-zero value for the `nanos` field must be /// of the same sign as the `seconds` field. Must be from -999,999,999 /// to +999,999,999 inclusive. #[prost(int32, tag="2")] pub nanos: i32, } /// `FieldMask` represents a set of symbolic field paths, for example: /// /// paths: "f.a" /// paths: "f.b.d" /// /// Here `f` represents a field in some root message, `a` and `b` /// fields in the message found in `f`, and `d` a field found in the /// message in `f.b`. /// /// Field masks are used to specify a subset of fields that should be /// returned by a get operation or modified by an update operation. /// Field masks also have a custom JSON encoding (see below). /// /// # Field Masks in Projections /// /// When used in the context of a projection, a response message or /// sub-message is filtered by the API to only contain those fields as /// specified in the mask. For example, if the mask in the previous /// example is applied to a response message as follows: /// /// f { /// a : 22 /// b { /// d : 1 /// x : 2 /// } /// y : 13 /// } /// z: 8 /// /// The result will not contain specific values for fields x,y and z /// (their value will be set to the default, and omitted in proto text /// output): /// /// /// f { /// a : 22 /// b { /// d : 1 /// } /// } /// /// A repeated field is not allowed except at the last position of a /// paths string. /// /// If a FieldMask object is not present in a get operation, the /// operation applies to all fields (as if a FieldMask of all fields /// had been specified). /// /// Note that a field mask does not necessarily apply to the /// top-level response message. In case of a REST get operation, the /// field mask applies directly to the response, but in case of a REST /// list operation, the mask instead applies to each individual message /// in the returned resource list. In case of a REST custom method, /// other definitions may be used. Where the mask applies will be /// clearly documented together with its declaration in the API. In /// any case, the effect on the returned resource/resources is required /// behavior for APIs. /// /// # Field Masks in Update Operations /// /// A field mask in update operations specifies which fields of the /// targeted resource are going to be updated. The API is required /// to only change the values of the fields as specified in the mask /// and leave the others untouched. If a resource is passed in to /// describe the updated values, the API ignores the values of all /// fields not covered by the mask. /// /// If a repeated field is specified for an update operation, new values will /// be appended to the existing repeated field in the target resource. Note that /// a repeated field is only allowed in the last position of a `paths` string. /// /// If a sub-message is specified in the last position of the field mask for an /// update operation, then new value will be merged into the existing sub-message /// in the target resource. /// /// For example, given the target message: /// /// f { /// b { /// d: 1 /// x: 2 /// } /// c: [1] /// } /// /// And an update message: /// /// f { /// b { /// d: 10 /// } /// c: [2] /// } /// /// then if the field mask is: /// /// paths: ["f.b", "f.c"] /// /// then the result will be: /// /// f { /// b { /// d: 10 /// x: 2 /// } /// c: [1, 2] /// } /// /// An implementation may provide options to override this default behavior for /// repeated and message fields. /// /// In order to reset a field's value to the default, the field must /// be in the mask and set to the default value in the provided resource. /// Hence, in order to reset all fields of a resource, provide a default /// instance of the resource and set all fields in the mask, or do /// not provide a mask as described below. /// /// If a field mask is not present on update, the operation applies to /// all fields (as if a field mask of all fields has been specified). /// Note that in the presence of schema evolution, this may mean that /// fields the client does not know and has therefore not filled into /// the request will be reset to their default. If this is unwanted /// behavior, a specific service may require a client to always specify /// a field mask, producing an error if not. /// /// As with get operations, the location of the resource which /// describes the updated values in the request message depends on the /// operation kind. In any case, the effect of the field mask is /// required to be honored by the API. /// /// ## Considerations for HTTP REST /// /// The HTTP kind of an update operation which uses a field mask must /// be set to PATCH instead of PUT in order to satisfy HTTP semantics /// (PUT must only be used for full updates). /// /// # JSON Encoding of Field Masks /// /// In JSON, a field mask is encoded as a single string where paths are /// separated by a comma. Fields name in each path are converted /// to/from lower-camel naming conventions. /// /// As an example, consider the following message declarations: /// /// message Profile { /// User user = 1; /// Photo photo = 2; /// } /// message User { /// string display_name = 1; /// string address = 2; /// } /// /// In proto a field mask for `Profile` may look as such: /// /// mask { /// paths: "user.display_name" /// paths: "photo" /// } /// /// In JSON, the same mask is represented as below: /// /// { /// mask: "user.displayName,photo" /// } /// /// # Field Masks and Oneof Fields /// /// Field masks treat fields in oneofs just as regular fields. Consider the /// following message: /// /// message SampleMessage { /// oneof test_oneof { /// string name = 4; /// SubMessage sub_message = 9; /// } /// } /// /// The field mask can be: /// /// mask { /// paths: "name" /// } /// /// Or: /// /// mask { /// paths: "sub_message" /// } /// /// Note that oneof type names ("test_oneof" in this case) cannot be used in /// paths. /// /// ## Field Mask Verification /// /// The implementation of any API method which has a FieldMask type field in the /// request should verify the included field paths, and return an /// `INVALID_ARGUMENT` error if any path is unmappable. #[derive(Clone, PartialEq, ::prost::Message)] pub struct FieldMask { /// The set of field mask paths. #[prost(string, repeated, tag="1")] pub paths: ::std::vec::Vec<std::string::String>, } /// `Struct` represents a structured data value, consisting of fields /// which map to dynamically typed values. In some languages, `Struct` /// might be supported by a native representation. For example, in /// scripting languages like JS a struct is represented as an /// object. The details of that representation are described together /// with the proto support for the language. /// /// The JSON representation for `Struct` is JSON object. #[derive(Clone, PartialEq, ::prost::Message)] pub struct Struct { /// Unordered map of dynamically typed values. #[prost(btree_map="string, message", tag="1")] pub fields: ::std::collections::BTreeMap<std::string::String, Value>, } /// `Value` represents a dynamically typed value which can be either /// null, a number, a string, a boolean, a recursive struct value, or a /// list of values. A producer of value is expected to set one of that /// variants, absence of any variant indicates an error. /// /// The JSON representation for `Value` is JSON value. #[derive(Clone, PartialEq, ::prost::Message)] pub struct Value { /// The kind of value. #[prost(oneof="value::Kind", tags="1, 2, 3, 4, 5, 6")] pub kind: ::std::option::Option<value::Kind>, } pub mod value { /// The kind of value. #[derive(Clone, PartialEq, ::prost::Oneof)] pub enum Kind { /// Represents a null value. #[prost(enumeration="super::NullValue", tag="1")] NullValue(i32), /// Represents a double value. #[prost(double, tag="2")] NumberValue(f64), /// Represents a string value. #[prost(string, tag="3")] StringValue(std::string::String), /// Represents a boolean value. #[prost(bool, tag="4")] BoolValue(bool), /// Represents a structured value. #[prost(message, tag="5")] StructValue(super::Struct), /// Represents a repeated `Value`. #[prost(message, tag="6")] ListValue(super::ListValue), } } /// `ListValue` is a wrapper around a repeated field of values. /// /// The JSON representation for `ListValue` is JSON array. #[derive(Clone, PartialEq, ::prost::Message)] pub struct ListValue { /// Repeated field of dynamically typed values. #[prost(message, repeated, tag="1")] pub values: ::std::vec::Vec<Value>, } /// `NullValue` is a singleton enumeration to represent the null value for the /// `Value` type union. /// /// The JSON representation for `NullValue` is JSON `null`. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)] #[repr(i32)] pub enum NullValue { /// Null value. NullValue = 0, } /// A Timestamp represents a point in time independent of any time zone or local /// calendar, encoded as a count of seconds and fractions of seconds at /// nanosecond resolution. The count is relative to an epoch at UTC midnight on /// January 1, 1970, in the proleptic Gregorian calendar which extends the /// Gregorian calendar backwards to year one. /// /// All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap /// second table is needed for interpretation, using a [24-hour linear /// smear](https://developers.google.com/time/smear). /// /// The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By /// restricting to that range, we ensure that we can convert to and from [RFC /// 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings. /// /// # Examples /// /// Example 1: Compute Timestamp from POSIX `time()`. /// /// Timestamp timestamp; /// timestamp.set_seconds(time(NULL)); /// timestamp.set_nanos(0); /// /// Example 2: Compute Timestamp from POSIX `gettimeofday()`. /// /// struct timeval tv; /// gettimeofday(&tv, NULL); /// /// Timestamp timestamp; /// timestamp.set_seconds(tv.tv_sec); /// timestamp.set_nanos(tv.tv_usec * 1000); /// /// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`. /// /// FILETIME ft; /// GetSystemTimeAsFileTime(&ft); /// UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime; /// /// // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z /// // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. /// Timestamp timestamp; /// timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); /// timestamp.set_nanos((INT32) ((ticks % 10000000) * 100)); /// /// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`. /// /// long millis = System.currentTimeMillis(); /// /// Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) /// .setNanos((int) ((millis % 1000) * 1000000)).build(); /// /// /// Example 5: Compute Timestamp from current time in Python. /// /// timestamp = Timestamp() /// timestamp.GetCurrentTime() /// /// # JSON Mapping /// /// In JSON format, the Timestamp type is encoded as a string in the /// [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the /// format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" /// where {year} is always expressed using four digits while {month}, {day}, /// {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional /// seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), /// are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone /// is required. A proto3 JSON serializer should always use UTC (as indicated by /// "Z") when printing the Timestamp type and a proto3 JSON parser should be /// able to accept both UTC and other timezones (as indicated by an offset). /// /// For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past /// 01:30 UTC on January 15, 2017. /// /// In JavaScript, one can convert a Date object to this format using the /// standard /// [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString) /// method. In Python, a standard `datetime.datetime` object can be converted /// to this format using /// [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with /// the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use /// the Joda Time's [`ISODateTimeFormat.dateTime()`]( /// http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D /// ) to obtain a formatter capable of generating timestamps in this format. /// /// #[derive(Clone, PartialEq, ::prost::Message)] pub struct Timestamp { /// Represents seconds of UTC time since Unix epoch /// 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to /// 9999-12-31T23:59:59Z inclusive. #[prost(int64, tag="1")] pub seconds: i64, /// Non-negative fractions of a second at nanosecond resolution. Negative /// second values with fractions must still have non-negative nanos values /// that count forward in time. Must be from 0 to 999,999,999 /// inclusive. #[prost(int32, tag="2")] pub nanos: i32, }