1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/// Asserts that the type implements exactly one in a set of traits.
///
/// Related:
/// - [`assert_impl_any!`]
/// - [`assert_impl_all!`]
/// - [`assert_not_impl_all!`]
/// - [`assert_not_impl_any!`]
///
/// # Examples
///
/// Given some type `Foo`, it is expected to implement either `Snap`, `Crackle`,
/// or `Pop`:
///
/// ```compile_fail
/// # use static_assertions::assert_impl_one; fn main() {}
/// struct Foo;
///
/// trait Snap {}
/// trait Crackle {}
/// trait Pop {}
///
/// assert_impl_one!(Foo: Snap, Crackle, Pop);
/// ```
///
/// If _only_ `Crackle` is implemented, the assertion passes:
///
/// ```
/// # use static_assertions::assert_impl_one; fn main() {}
/// # struct Foo;
/// # trait Snap {}
/// # trait Crackle {}
/// # trait Pop {}
/// impl Crackle for Foo {}
///
/// assert_impl_one!(Foo: Snap, Crackle, Pop);
/// ```
///
/// If `Snap` or `Pop` is _also_ implemented, the assertion fails:
///
/// ```compile_fail
/// # use static_assertions::assert_impl_one; fn main() {}
/// # struct Foo;
/// # trait Snap {}
/// # trait Crackle {}
/// # trait Pop {}
/// # impl Crackle for Foo {}
/// impl Pop for Foo {}
///
/// assert_impl_one!(Foo: Snap, Crackle, Pop);
/// ```
///
/// [`assert_impl_any!`]:     macro.assert_impl_any.html
/// [`assert_impl_all!`]:     macro.assert_impl_all.html
/// [`assert_not_impl_all!`]: macro.assert_not_impl_all.html
/// [`assert_not_impl_any!`]: macro.assert_not_impl_any.html
#[macro_export]
macro_rules! assert_impl_one {
    ($x:ty: $($t:path),+ $(,)?) => {
        const _: fn() = || {
            // Generic trait that must be implemented for `$x` exactly once.
            trait AmbiguousIfMoreThanOne<A> {
                // Required for actually being able to reference the trait.
                fn some_item() {}
            }

            // Creates multiple scoped `Token` types for each trait `$t`, over
            // which a specialized `AmbiguousIfMoreThanOne<Token>` is
            // implemented for every type that implements `$t`.
            $({
                #[allow(dead_code)]
                struct Token;

                impl<T: ?Sized + $t> AmbiguousIfMoreThanOne<Token> for T {}
            })+

            // If there is only one specialized trait impl, type inference with
            // `_` can be resolved and this can compile. Fails to compile if
            // `$x` implements more than one `AmbiguousIfMoreThanOne<Token>` or
            // does not implement any at all.
            let _ = <$x as AmbiguousIfMoreThanOne<_>>::some_item;
        };
    };
}

/// Asserts that the type implements _all_ of the given traits.
///
/// See [`assert_not_impl_all!`] for achieving the opposite effect.
///
/// # Examples
///
/// This can be used to ensure types implement auto traits such as [`Send`] and
/// [`Sync`], as well as traits with [blanket `impl`s][blanket].
///
/// ```
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_impl_all!(u32: Copy, Send);
/// assert_impl_all!(&str: Into<String>);
/// ```
///
/// The following example fails to compile because raw pointers do not implement
/// [`Send`] since they cannot be moved between threads safely:
///
/// ```compile_fail
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_impl_all!(*const u8: Send);
/// ```
///
/// [`assert_not_impl_all!`]: macro.assert_not_impl_all.html
/// [`Send`]: https://doc.rust-lang.org/std/marker/trait.Send.html
/// [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html
/// [blanket]: https://doc.rust-lang.org/book/ch10-02-traits.html#using-trait-bounds-to-conditionally-implement-methods
#[macro_export]
macro_rules! assert_impl_all {
    ($type:ty: $($trait:path),+ $(,)?) => {
        const _: fn() = || {
            // Only callable when `$type` implements all traits in `$($trait)+`.
            fn assert_impl_all<T: ?Sized $(+ $trait)+>() {}
            assert_impl_all::<$type>();
        };
    };
}

/// Asserts that the type implements _any_ of the given traits.
///
/// See [`assert_not_impl_any!`] for achieving the opposite effect.
///
/// # Examples
///
/// `u8` cannot be converted from `u16`, but it can be converted into `u16`:
///
/// ```
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_impl_any!(u8: From<u16>, Into<u16>);
/// ```
///
/// The unit type cannot be converted from `u8` or `u16`, but it does implement
/// [`Send`]:
///
/// ```
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_impl_any!((): From<u8>, From<u16>, Send);
/// ```
///
/// The following example fails to compile because raw pointers do not implement
/// [`Send`] or [`Sync`] since they cannot be moved or shared between threads
/// safely:
///
/// ```compile_fail
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_impl_any!(*const u8: Send, Sync);
/// ```
///
/// [`assert_not_impl_any!`]: macro.assert_not_impl_any.html
/// [`Send`]: https://doc.rust-lang.org/std/marker/trait.Send.html
/// [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html
#[macro_export]
macro_rules! assert_impl_any {
    ($x:ty: $($t:path),+ $(,)?) => {
        const _: fn() = || {
            use $crate::_core::marker::PhantomData;
            use $crate::_core::ops::Deref;

            // Fallback to use as the first iterative assignment to `previous`.
            let previous = AssertImplAnyFallback;
            struct AssertImplAnyFallback;

            // Ensures that blanket traits can't impersonate the method. This
            // prevents a false positive attack where---if a blanket trait is in
            // scope that has `_static_assertions_impl_any`---the macro will
            // compile when it shouldn't.
            //
            // See https://github.com/nvzqz/static-assertions-rs/issues/19 for
            // more info.
            struct ActualAssertImplAnyToken;
            trait AssertImplAnyToken {}
            impl AssertImplAnyToken for ActualAssertImplAnyToken {}
            fn assert_impl_any_token<T: AssertImplAnyToken>(_: T) {}

            $(let previous = {
                struct Wrapper<T, N>(PhantomData<T>, N);

                // If the method for this wrapper can't be called then the
                // compiler will insert a deref and try again. This forwards the
                // compiler's next attempt to the previous wrapper.
                impl<T, N> Deref for Wrapper<T, N> {
                    type Target = N;

                    fn deref(&self) -> &Self::Target {
                        &self.1
                    }
                }

                // This impl is bounded on the `$t` trait, so the method can
                // only be called if `$x` implements `$t`. This is why a new
                // `Wrapper` is defined for each `previous`.
                impl<T: $t, N> Wrapper<T, N> {
                    fn _static_assertions_impl_any(&self) -> ActualAssertImplAnyToken {
                        ActualAssertImplAnyToken
                    }
                }

                Wrapper::<$x, _>(PhantomData, previous)
            };)+

            // Attempt to find the method that can actually be called. The found
            // method must return a type that implements the sealed `Token`
            // trait, this ensures that blanket trait methods can't cause this
            // macro to compile.
            assert_impl_any_token(previous._static_assertions_impl_any());
        };
    };
}

/// Asserts that the type does **not** implement _all_ of the given traits.
///
/// This can be used to ensure types do not implement auto traits such as
/// [`Send`] and [`Sync`], as well as traits with [blanket `impl`s][blanket].
///
/// Note that the combination of all provided traits is required to not be
/// implemented. If you want to check that none of multiple traits are
/// implemented you should invoke [`assert_not_impl_any!`] instead.
///
/// # Examples
///
/// Although `u32` implements `From<u16>`, it does not implement `Into<usize>`:
///
/// ```
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_not_impl_all!(u32: From<u16>, Into<usize>);
/// ```
///
/// The following example fails to compile since `u32` can be converted into
/// `u64`.
///
/// ```compile_fail
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_not_impl_all!(u32: Into<u64>);
/// ```
///
/// The following compiles because [`Cell`] is not both [`Sync`] _and_ [`Send`]:
///
/// ```
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// use std::cell::Cell;
///
/// assert_not_impl_all!(Cell<u32>: Sync, Send);
/// ```
///
/// But it is [`Send`], so this fails to compile:
///
/// ```compile_fail
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// # std::cell::Cell;
/// assert_not_impl_all!(Cell<u32>: Send);
/// ```
///
/// [`Send`]: https://doc.rust-lang.org/std/marker/trait.Send.html
/// [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html
/// [`assert_not_impl_any!`]: macro.assert_not_impl_any.html
/// [`Cell`]: https://doc.rust-lang.org/std/cell/struct.Cell.html
/// [blanket]: https://doc.rust-lang.org/book/ch10-02-traits.html#using-trait-bounds-to-conditionally-implement-methods
#[macro_export]
macro_rules! assert_not_impl_all {
    ($x:ty: $($t:path),+ $(,)?) => {
        const _: fn() = || {
            // Generic trait with a blanket impl over `()` for all types.
            trait AmbiguousIfImpl<A> {
                // Required for actually being able to reference the trait.
                fn some_item() {}
            }

            impl<T: ?Sized> AmbiguousIfImpl<()> for T {}

            // Used for the specialized impl when *all* traits in
            // `$($t)+` are implemented.
            #[allow(dead_code)]
            struct Invalid;

            impl<T: ?Sized $(+ $t)+> AmbiguousIfImpl<Invalid> for T {}

            // If there is only one specialized trait impl, type inference with
            // `_` can be resolved and this can compile. Fails to compile if
            // `$x` implements `AmbiguousIfImpl<Invalid>`.
            let _ = <$x as AmbiguousIfImpl<_>>::some_item;
        };
    };
}

/// Asserts that the type does **not** implement _any_ of the given traits.
///
/// This can be used to ensure types do not implement auto traits such as
/// [`Send`] and [`Sync`], as well as traits with [blanket `impl`s][blanket].
///
/// This macro causes a compilation failure if any of the provided individual
/// traits are implemented for the type. If you want to check that a combination
/// of traits is not implemented you should invoke [`assert_not_impl_all!`]
/// instead. For single traits both macros behave the same.
///
/// # Examples
///
/// If `u32` were to implement `Into` conversions for `usize` _and_ for `u8`,
/// the following would fail to compile:
///
/// ```
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_not_impl_any!(u32: Into<usize>, Into<u8>);
/// ```
///
/// This is also good for simple one-off cases:
///
/// ```
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_not_impl_any!(&'static mut u8: Copy);
/// ```
///
/// The following example fails to compile since `u32` can be converted into
/// `u64` even though it can not be converted into a `u16`:
///
/// ```compile_fail
/// # #[macro_use] extern crate static_assertions; fn main() {}
/// assert_not_impl_any!(u32: Into<u64>, Into<u16>);
/// ```
///
/// [`Send`]: https://doc.rust-lang.org/std/marker/trait.Send.html
/// [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html
/// [`assert_not_impl_all!`]: macro.assert_not_impl_all.html
/// [blanket]: https://doc.rust-lang.org/book/ch10-02-traits.html#using-trait-bounds-to-conditionally-implement-methods
#[macro_export]
macro_rules! assert_not_impl_any {
    ($x:ty: $($t:path),+ $(,)?) => {
        const _: fn() = || {
            // Generic trait with a blanket impl over `()` for all types.
            trait AmbiguousIfImpl<A> {
                // Required for actually being able to reference the trait.
                fn some_item() {}
            }

            impl<T: ?Sized> AmbiguousIfImpl<()> for T {}

            // Creates multiple scoped `Invalid` types for each trait `$t`, over
            // which a specialized `AmbiguousIfImpl<Invalid>` is implemented for
            // every type that implements `$t`.
            $({
                #[allow(dead_code)]
                struct Invalid;

                impl<T: ?Sized + $t> AmbiguousIfImpl<Invalid> for T {}
            })+

            // If there is only one specialized trait impl, type inference with
            // `_` can be resolved and this can compile. Fails to compile if
            // `$x` implements any `AmbiguousIfImpl<Invalid>`.
            let _ = <$x as AmbiguousIfImpl<_>>::some_item;
        };
    };
}