1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
// -*- mode: rust; -*- // // This file is part of ed25519-dalek. // Copyright (c) 2017-2019 isis lovecruft // See LICENSE for licensing information. // // Authors: // - isis agora lovecruft <[email protected]> //! ed25519 keypairs. #[cfg(feature = "rand")] use rand::{CryptoRng, RngCore}; #[cfg(feature = "serde")] use serde::de::Error as SerdeError; #[cfg(feature = "serde")] use serde::de::Visitor; #[cfg(feature = "serde")] use serde::de::SeqAccess; #[cfg(feature = "serde")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; pub use sha2::Sha512; use curve25519_dalek::digest::generic_array::typenum::U64; pub use curve25519_dalek::digest::Digest; use ed25519::signature::{Signer, Verifier}; use crate::constants::*; use crate::errors::*; use crate::public::*; use crate::secret::*; /// An ed25519 keypair. #[derive(Debug)] pub struct Keypair { /// The secret half of this keypair. pub secret: SecretKey, /// The public half of this keypair. pub public: PublicKey, } impl Keypair { /// Convert this keypair to bytes. /// /// # Returns /// /// An array of bytes, `[u8; KEYPAIR_LENGTH]`. The first /// `SECRET_KEY_LENGTH` of bytes is the `SecretKey`, and the next /// `PUBLIC_KEY_LENGTH` bytes is the `PublicKey` (the same as other /// libraries, such as [Adam Langley's ed25519 Golang /// implementation](https://github.com/agl/ed25519/)). pub fn to_bytes(&self) -> [u8; KEYPAIR_LENGTH] { let mut bytes: [u8; KEYPAIR_LENGTH] = [0u8; KEYPAIR_LENGTH]; bytes[..SECRET_KEY_LENGTH].copy_from_slice(self.secret.as_bytes()); bytes[SECRET_KEY_LENGTH..].copy_from_slice(self.public.as_bytes()); bytes } /// Construct a `Keypair` from the bytes of a `PublicKey` and `SecretKey`. /// /// # Inputs /// /// * `bytes`: an `&[u8]` representing the scalar for the secret key, and a /// compressed Edwards-Y coordinate of a point on curve25519, both as bytes. /// (As obtained from `Keypair::to_bytes()`.) /// /// # Warning /// /// Absolutely no validation is done on the key. If you give this function /// bytes which do not represent a valid point, or which do not represent /// corresponding parts of the key, then your `Keypair` will be broken and /// it will be your fault. /// /// # Returns /// /// A `Result` whose okay value is an EdDSA `Keypair` or whose error value /// is an `SignatureError` describing the error that occurred. pub fn from_bytes<'a>(bytes: &'a [u8]) -> Result<Keypair, SignatureError> { if bytes.len() != KEYPAIR_LENGTH { return Err(InternalError::BytesLengthError { name: "Keypair", length: KEYPAIR_LENGTH, }.into()); } let secret = SecretKey::from_bytes(&bytes[..SECRET_KEY_LENGTH])?; let public = PublicKey::from_bytes(&bytes[SECRET_KEY_LENGTH..])?; Ok(Keypair{ secret: secret, public: public }) } /// Generate an ed25519 keypair. /// /// # Example /// /// ``` /// extern crate rand; /// extern crate ed25519_dalek; /// /// # #[cfg(feature = "std")] /// # fn main() { /// /// use rand::rngs::OsRng; /// use ed25519_dalek::Keypair; /// use ed25519_dalek::Signature; /// /// let mut csprng = OsRng{}; /// let keypair: Keypair = Keypair::generate(&mut csprng); /// /// # } /// # /// # #[cfg(not(feature = "std"))] /// # fn main() { } /// ``` /// /// # Input /// /// A CSPRNG with a `fill_bytes()` method, e.g. `rand_os::OsRng`. /// /// The caller must also supply a hash function which implements the /// `Digest` and `Default` traits, and which returns 512 bits of output. /// The standard hash function used for most ed25519 libraries is SHA-512, /// which is available with `use sha2::Sha512` as in the example above. /// Other suitable hash functions include Keccak-512 and Blake2b-512. pub fn generate<R>(csprng: &mut R) -> Keypair where R: CryptoRng + RngCore, { let sk: SecretKey = SecretKey::generate(csprng); let pk: PublicKey = (&sk).into(); Keypair{ public: pk, secret: sk } } /// Sign a `prehashed_message` with this `Keypair` using the /// Ed25519ph algorithm defined in [RFC8032 §5.1][rfc8032]. /// /// # Inputs /// /// * `prehashed_message` is an instantiated hash digest with 512-bits of /// output which has had the message to be signed previously fed into its /// state. /// * `context` is an optional context string, up to 255 bytes inclusive, /// which may be used to provide additional domain separation. If not /// set, this will default to an empty string. /// /// # Returns /// /// An Ed25519ph [`Signature`] on the `prehashed_message`. /// /// # Examples /// /// ``` /// extern crate ed25519_dalek; /// extern crate rand; /// /// use ed25519_dalek::Digest; /// use ed25519_dalek::Keypair; /// use ed25519_dalek::Sha512; /// use ed25519_dalek::Signature; /// use rand::rngs::OsRng; /// /// # #[cfg(feature = "std")] /// # fn main() { /// let mut csprng = OsRng{}; /// let keypair: Keypair = Keypair::generate(&mut csprng); /// let message: &[u8] = b"All I want is to pet all of the dogs."; /// /// // Create a hash digest object which we'll feed the message into: /// let mut prehashed: Sha512 = Sha512::new(); /// /// prehashed.input(message); /// # } /// # /// # #[cfg(not(feature = "std"))] /// # fn main() { } /// ``` /// /// If you want, you can optionally pass a "context". It is generally a /// good idea to choose a context and try to make it unique to your project /// and this specific usage of signatures. /// /// For example, without this, if you were to [convert your OpenPGP key /// to a Bitcoin key][terrible_idea] (just as an example, and also Don't /// Ever Do That) and someone tricked you into signing an "email" which was /// actually a Bitcoin transaction moving all your magic internet money to /// their address, it'd be a valid transaction. /// /// By adding a context, this trick becomes impossible, because the context /// is concatenated into the hash, which is then signed. So, going with the /// previous example, if your bitcoin wallet used a context of /// "BitcoinWalletAppTxnSigning" and OpenPGP used a context (this is likely /// the least of their safety problems) of "GPGsCryptoIsntConstantTimeLol", /// then the signatures produced by both could never match the other, even /// if they signed the exact same message with the same key. /// /// Let's add a context for good measure (remember, you'll want to choose /// your own!): /// /// ``` /// # extern crate ed25519_dalek; /// # extern crate rand; /// # /// # use ed25519_dalek::Digest; /// # use ed25519_dalek::Keypair; /// # use ed25519_dalek::Signature; /// # use ed25519_dalek::SignatureError; /// # use ed25519_dalek::Sha512; /// # use rand::rngs::OsRng; /// # /// # fn do_test() -> Result<Signature, SignatureError> { /// # let mut csprng = OsRng{}; /// # let keypair: Keypair = Keypair::generate(&mut csprng); /// # let message: &[u8] = b"All I want is to pet all of the dogs."; /// # let mut prehashed: Sha512 = Sha512::new(); /// # prehashed.input(message); /// # /// let context: &[u8] = b"Ed25519DalekSignPrehashedDoctest"; /// /// let sig: Signature = keypair.sign_prehashed(prehashed, Some(context))?; /// # /// # Ok(sig) /// # } /// # #[cfg(feature = "std")] /// # fn main() { /// # do_test(); /// # } /// # /// # #[cfg(not(feature = "std"))] /// # fn main() { } /// ``` /// /// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1 /// [terrible_idea]: https://github.com/isislovecruft/scripts/blob/master/gpgkey2bc.py pub fn sign_prehashed<D>( &self, prehashed_message: D, context: Option<&[u8]>, ) -> Result<ed25519::Signature, SignatureError> where D: Digest<OutputSize = U64>, { let expanded: ExpandedSecretKey = (&self.secret).into(); // xxx thanks i hate this expanded.sign_prehashed(prehashed_message, &self.public, context).into() } /// Verify a signature on a message with this keypair's public key. pub fn verify( &self, message: &[u8], signature: &ed25519::Signature ) -> Result<(), SignatureError> { self.public.verify(message, signature) } /// Verify a `signature` on a `prehashed_message` using the Ed25519ph algorithm. /// /// # Inputs /// /// * `prehashed_message` is an instantiated hash digest with 512-bits of /// output which has had the message to be signed previously fed into its /// state. /// * `context` is an optional context string, up to 255 bytes inclusive, /// which may be used to provide additional domain separation. If not /// set, this will default to an empty string. /// * `signature` is a purported Ed25519ph [`Signature`] on the `prehashed_message`. /// /// # Returns /// /// Returns `true` if the `signature` was a valid signature created by this /// `Keypair` on the `prehashed_message`. /// /// # Examples /// /// ``` /// extern crate ed25519_dalek; /// extern crate rand; /// /// use ed25519_dalek::Digest; /// use ed25519_dalek::Keypair; /// use ed25519_dalek::Signature; /// use ed25519_dalek::SignatureError; /// use ed25519_dalek::Sha512; /// use rand::rngs::OsRng; /// /// # fn do_test() -> Result<(), SignatureError> { /// let mut csprng = OsRng{}; /// let keypair: Keypair = Keypair::generate(&mut csprng); /// let message: &[u8] = b"All I want is to pet all of the dogs."; /// /// let mut prehashed: Sha512 = Sha512::new(); /// prehashed.input(message); /// /// let context: &[u8] = b"Ed25519DalekSignPrehashedDoctest"; /// /// let sig: Signature = keypair.sign_prehashed(prehashed, Some(context))?; /// /// // The sha2::Sha512 struct doesn't implement Copy, so we'll have to create a new one: /// let mut prehashed_again: Sha512 = Sha512::default(); /// prehashed_again.input(message); /// /// let verified = keypair.public.verify_prehashed(prehashed_again, Some(context), &sig); /// /// assert!(verified.is_ok()); /// /// # verified /// # } /// # /// # #[cfg(feature = "std")] /// # fn main() { /// # do_test(); /// # } /// # /// # #[cfg(not(feature = "std"))] /// # fn main() { } /// ``` /// /// [rfc8032]: https://tools.ietf.org/html/rfc8032#section-5.1 pub fn verify_prehashed<D>( &self, prehashed_message: D, context: Option<&[u8]>, signature: &ed25519::Signature, ) -> Result<(), SignatureError> where D: Digest<OutputSize = U64>, { self.public.verify_prehashed(prehashed_message, context, signature) } /// Strictly verify a signature on a message with this keypair's public key. /// /// # On The (Multiple) Sources of Malleability in Ed25519 Signatures /// /// This version of verification is technically non-RFC8032 compliant. The /// following explains why. /// /// 1. Scalar Malleability /// /// The authors of the RFC explicitly stated that verification of an ed25519 /// signature must fail if the scalar `s` is not properly reduced mod \ell: /// /// > To verify a signature on a message M using public key A, with F /// > being 0 for Ed25519ctx, 1 for Ed25519ph, and if Ed25519ctx or /// > Ed25519ph is being used, C being the context, first split the /// > signature into two 32-octet halves. Decode the first half as a /// > point R, and the second half as an integer S, in the range /// > 0 <= s < L. Decode the public key A as point A'. If any of the /// > decodings fail (including S being out of range), the signature is /// > invalid.) /// /// All `verify_*()` functions within ed25519-dalek perform this check. /// /// 2. Point malleability /// /// The authors of the RFC added in a malleability check to step #3 in /// §5.1.7, for small torsion components in the `R` value of the signature, /// *which is not strictly required*, as they state: /// /// > Check the group equation \[8\]\[S\]B = \[8\]R + \[8\]\[k\]A'. It's /// > sufficient, but not required, to instead check \[S\]B = R + \[k\]A'. /// /// # History of Malleability Checks /// /// As originally defined (cf. the "Malleability" section in the README of /// this repo), ed25519 signatures didn't consider *any* form of /// malleability to be an issue. Later the scalar malleability was /// considered important. Still later, particularly with interests in /// cryptocurrency design and in unique identities (e.g. for Signal users, /// Tor onion services, etc.), the group element malleability became a /// concern. /// /// However, libraries had already been created to conform to the original /// definition. One well-used library in particular even implemented the /// group element malleability check, *but only for batch verification*! /// Which meant that even using the same library, a single signature could /// verify fine individually, but suddenly, when verifying it with a bunch /// of other signatures, the whole batch would fail! /// /// # "Strict" Verification /// /// This method performs *both* of the above signature malleability checks. /// /// It must be done as a separate method because one doesn't simply get to /// change the definition of a cryptographic primitive ten years /// after-the-fact with zero consideration for backwards compatibility in /// hardware and protocols which have it already have the older definition /// baked in. /// /// # Return /// /// Returns `Ok(())` if the signature is valid, and `Err` otherwise. #[allow(non_snake_case)] pub fn verify_strict( &self, message: &[u8], signature: &ed25519::Signature, ) -> Result<(), SignatureError> { self.public.verify_strict(message, signature) } } impl Signer<ed25519::Signature> for Keypair { /// Sign a message with this keypair's secret key. fn try_sign(&self, message: &[u8]) -> Result<ed25519::Signature, SignatureError> { let expanded: ExpandedSecretKey = (&self.secret).into(); Ok(expanded.sign(&message, &self.public).into()) } } impl Verifier<ed25519::Signature> for Keypair { /// Verify a signature on a message with this keypair's public key. fn verify(&self, message: &[u8], signature: &ed25519::Signature) -> Result<(), SignatureError> { self.public.verify(message, signature) } } #[cfg(feature = "serde")] impl Serialize for Keypair { fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: Serializer, { serializer.serialize_bytes(&self.to_bytes()[..]) } } #[cfg(feature = "serde")] impl<'d> Deserialize<'d> for Keypair { fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer<'d>, { struct KeypairVisitor; impl<'d> Visitor<'d> for KeypairVisitor { type Value = Keypair; fn expecting(&self, formatter: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result { formatter.write_str("An ed25519 keypair, 64 bytes in total where the secret key is \ the first 32 bytes and is in unexpanded form, and the second \ 32 bytes is a compressed point for a public key.") } fn visit_bytes<E>(self, bytes: &[u8]) -> Result<Keypair, E> where E: SerdeError, { if bytes.len() != KEYPAIR_LENGTH { return Err(SerdeError::invalid_length(bytes.len(), &self)); } let secret_key = SecretKey::from_bytes(&bytes[..SECRET_KEY_LENGTH]); let public_key = PublicKey::from_bytes(&bytes[SECRET_KEY_LENGTH..]); if let (Ok(secret), Ok(public)) = (secret_key, public_key) { Ok(Keypair{ secret, public }) } else { Err(SerdeError::invalid_length(bytes.len(), &self)) } } fn visit_seq<A>(self, mut seq: A) -> Result<Keypair, A::Error> where A: SeqAccess<'d> { if let Some(len) = seq.size_hint() { if len != KEYPAIR_LENGTH { return Err(SerdeError::invalid_length(len, &self)); } } // TODO: We could do this with `MaybeUninit` to avoid unnecessary initialization costs let mut bytes: [u8; KEYPAIR_LENGTH] = [0u8; KEYPAIR_LENGTH]; for i in 0..KEYPAIR_LENGTH { bytes[i] = seq.next_element()?.ok_or_else(|| SerdeError::invalid_length(i, &self))?; } let secret_key = SecretKey::from_bytes(&bytes[..SECRET_KEY_LENGTH]); let public_key = PublicKey::from_bytes(&bytes[SECRET_KEY_LENGTH..]); if let (Ok(secret), Ok(public)) = (secret_key, public_key) { Ok(Keypair{ secret, public }) } else { Err(SerdeError::invalid_length(bytes.len(), &self)) } } } deserializer.deserialize_bytes(KeypairVisitor) } }