1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
// Copyright 2015-2016 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! Authenticated Encryption with Associated Data (AEAD). //! //! See [Authenticated encryption: relations among notions and analysis of the //! generic composition paradigm][AEAD] for an introduction to the concept of //! AEADs. //! //! [AEAD]: http://www-cse.ucsd.edu/~mihir/papers/oem.html //! [`crypto.cipher.AEAD`]: https://golang.org/pkg/crypto/cipher/#AEAD use self::block::{Block, BLOCK_LEN}; use crate::{constant_time, cpu, error, hkdf, polyfill}; use core::ops::RangeFrom; pub use self::{ aes_gcm::{AES_128_GCM, AES_256_GCM}, chacha20_poly1305::CHACHA20_POLY1305, nonce::{Nonce, NONCE_LEN}, }; /// A sequences of unique nonces. /// /// A given `NonceSequence` must never return the same `Nonce` twice from /// `advance()`. /// /// A simple counter is a reasonable (but probably not ideal) `NonceSequence`. /// /// Intentionally not `Clone` or `Copy` since cloning would allow duplication /// of the sequence. pub trait NonceSequence { /// Returns the next nonce in the sequence. /// /// This may fail if "too many" nonces have been requested, where how many /// is too many is up to the implementation of `NonceSequence`. An /// implementation may that enforce a maximum number of records are /// sent/received under a key this way. Once `advance()` fails, it must /// fail for all subsequent calls. fn advance(&mut self) -> Result<Nonce, error::Unspecified>; } /// An AEAD key bound to a nonce sequence. pub trait BoundKey<N: NonceSequence>: core::fmt::Debug { /// Constructs a new key from the given `UnboundKey` and `NonceSequence`. fn new(key: UnboundKey, nonce_sequence: N) -> Self; /// The key's AEAD algorithm. fn algorithm(&self) -> &'static Algorithm; } /// An AEAD key for authenticating and decrypting ("opening"), bound to a nonce /// sequence. /// /// Intentionally not `Clone` or `Copy` since cloning would allow duplication /// of the nonce sequence. pub struct OpeningKey<N: NonceSequence> { key: UnboundKey, nonce_sequence: N, } impl<N: NonceSequence> BoundKey<N> for OpeningKey<N> { fn new(key: UnboundKey, nonce_sequence: N) -> Self { Self { key, nonce_sequence, } } #[inline] fn algorithm(&self) -> &'static Algorithm { self.key.algorithm } } impl<N: NonceSequence> core::fmt::Debug for OpeningKey<N> { fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { f.debug_struct("OpeningKey") .field("algorithm", &self.algorithm()) .finish() } } impl<N: NonceSequence> OpeningKey<N> { /// Authenticates and decrypts (“opens”) data in place. /// /// `aad` is the additional authenticated data (AAD), if any. /// /// On input, `in_out` must be the ciphertext followed by the tag. When /// `open_in_place()` returns `Ok(plaintext)`, the input ciphertext /// has been overwritten by the plaintext; `plaintext` will refer to the /// plaintext without the tag. /// /// When `open_in_place()` returns `Err(..)`, `in_out` may have been /// overwritten in an unspecified way. #[inline] pub fn open_in_place<'in_out, A>( &mut self, aad: Aad<A>, in_out: &'in_out mut [u8], ) -> Result<&'in_out mut [u8], error::Unspecified> where A: AsRef<[u8]>, { self.open_within(aad, in_out, 0..) } /// Authenticates and decrypts (“opens”) data in place, with a shift. /// /// `aad` is the additional authenticated data (AAD), if any. /// /// On input, `in_out[ciphertext_and_tag]` must be the ciphertext followed /// by the tag. When `open_within()` returns `Ok(plaintext)`, the plaintext /// will be at `in_out[0..plaintext.len()]`. In other words, the following /// two code fragments are equivalent for valid values of /// `ciphertext_and_tag`, except `open_within` will often be more efficient: /// /// /// ```skip /// let plaintext = key.open_within(aad, in_out, cipertext_and_tag)?; /// ``` /// /// ```skip /// let ciphertext_and_tag_len = in_out[ciphertext_and_tag].len(); /// in_out.copy_within(ciphertext_and_tag, 0); /// let plaintext = key.open_in_place(aad, &mut in_out[..ciphertext_and_tag_len])?; /// ``` /// /// Similarly, `key.open_within(aad, in_out, 0..)` is equivalent to /// `key.open_in_place(aad, in_out)`. /// /// When `open_in_place()` returns `Err(..)`, `in_out` may have been /// overwritten in an unspecified way. /// /// The shifting feature is useful in the case where multiple packets are /// being reassembled in place. Consider this example where the peer has /// sent the message “Split stream reassembled in place” split into /// three sealed packets: /// /// ```ascii-art /// Packet 1 Packet 2 Packet 3 /// Input: [Header][Ciphertext][Tag][Header][Ciphertext][Tag][Header][Ciphertext][Tag] /// | +--------------+ | /// +------+ +-----+ +----------------------------------+ /// v v v /// Output: [Plaintext][Plaintext][Plaintext] /// “Split stream reassembled in place” /// ``` /// /// This reassembly be accomplished with three calls to `open_within()`. #[inline] pub fn open_within<'in_out, A>( &mut self, aad: Aad<A>, in_out: &'in_out mut [u8], ciphertext_and_tag: RangeFrom<usize>, ) -> Result<&'in_out mut [u8], error::Unspecified> where A: AsRef<[u8]>, { open_within_( &self.key, self.nonce_sequence.advance()?, aad, in_out, ciphertext_and_tag, ) } } #[inline] fn open_within_<'in_out, A: AsRef<[u8]>>( key: &UnboundKey, nonce: Nonce, Aad(aad): Aad<A>, in_out: &'in_out mut [u8], ciphertext_and_tag: RangeFrom<usize>, ) -> Result<&'in_out mut [u8], error::Unspecified> { fn open_within<'in_out>( key: &UnboundKey, nonce: Nonce, aad: Aad<&[u8]>, in_out: &'in_out mut [u8], ciphertext_and_tag: RangeFrom<usize>, ) -> Result<&'in_out mut [u8], error::Unspecified> { let in_prefix_len = ciphertext_and_tag.start; let ciphertext_and_tag_len = in_out .len() .checked_sub(in_prefix_len) .ok_or(error::Unspecified)?; let ciphertext_len = ciphertext_and_tag_len .checked_sub(TAG_LEN) .ok_or(error::Unspecified)?; check_per_nonce_max_bytes(key.algorithm, ciphertext_len)?; let (in_out, received_tag) = in_out.split_at_mut(in_prefix_len + ciphertext_len); let Tag(calculated_tag) = (key.algorithm.open)( &key.inner, nonce, aad, in_prefix_len, in_out, key.cpu_features, ); if constant_time::verify_slices_are_equal(calculated_tag.as_ref(), received_tag).is_err() { // Zero out the plaintext so that it isn't accidentally leaked or used // after verification fails. It would be safest if we could check the // tag before decrypting, but some `open` implementations interleave // authentication with decryption for performance. for b in &mut in_out[..ciphertext_len] { *b = 0; } return Err(error::Unspecified); } // `ciphertext_len` is also the plaintext length. Ok(&mut in_out[..ciphertext_len]) } open_within( key, nonce, Aad::from(aad.as_ref()), in_out, ciphertext_and_tag, ) } /// An AEAD key for encrypting and signing ("sealing"), bound to a nonce /// sequence. /// /// Intentionally not `Clone` or `Copy` since cloning would allow duplication /// of the nonce sequence. pub struct SealingKey<N: NonceSequence> { key: UnboundKey, nonce_sequence: N, } impl<N: NonceSequence> BoundKey<N> for SealingKey<N> { fn new(key: UnboundKey, nonce_sequence: N) -> Self { Self { key, nonce_sequence, } } #[inline] fn algorithm(&self) -> &'static Algorithm { self.key.algorithm } } impl<N: NonceSequence> core::fmt::Debug for SealingKey<N> { fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { f.debug_struct("SealingKey") .field("algorithm", &self.algorithm()) .finish() } } impl<N: NonceSequence> SealingKey<N> { /// Deprecated. Renamed to `seal_in_place_append_tag()`. #[deprecated(note = "Renamed to `seal_in_place_append_tag`.")] #[inline] pub fn seal_in_place<A, InOut>( &mut self, aad: Aad<A>, in_out: &mut InOut, ) -> Result<(), error::Unspecified> where A: AsRef<[u8]>, InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>, { self.seal_in_place_append_tag(aad, in_out) } /// Encrypts and signs (“seals”) data in place, appending the tag to the /// resulting ciphertext. /// /// `key.seal_in_place_append_tag(aad, in_out)` is equivalent to: /// /// ```skip /// key.seal_in_place_separate_tag(aad, in_out.as_mut()) /// .map(|tag| in_out.extend(tag.as_ref())) /// ``` #[inline] pub fn seal_in_place_append_tag<A, InOut>( &mut self, aad: Aad<A>, in_out: &mut InOut, ) -> Result<(), error::Unspecified> where A: AsRef<[u8]>, InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>, { self.seal_in_place_separate_tag(aad, in_out.as_mut()) .map(|tag| in_out.extend(tag.as_ref())) } /// Encrypts and signs (“seals”) data in place. /// /// `aad` is the additional authenticated data (AAD), if any. This is /// authenticated but not encrypted. The type `A` could be a byte slice /// `&[u8]`, a byte array `[u8; N]` for some constant `N`, `Vec<u8>`, etc. /// If there is no AAD then use `Aad::empty()`. /// /// The plaintext is given as the input value of `in_out`. `seal_in_place()` /// will overwrite the plaintext with the ciphertext and return the tag. /// For most protocols, the caller must append the tag to the ciphertext. /// The tag will be `self.algorithm.tag_len()` bytes long. #[inline] pub fn seal_in_place_separate_tag<A>( &mut self, aad: Aad<A>, in_out: &mut [u8], ) -> Result<Tag, error::Unspecified> where A: AsRef<[u8]>, { seal_in_place_separate_tag_( &self.key, self.nonce_sequence.advance()?, Aad::from(aad.as_ref()), in_out, ) } } #[inline] fn seal_in_place_separate_tag_( key: &UnboundKey, nonce: Nonce, aad: Aad<&[u8]>, in_out: &mut [u8], ) -> Result<Tag, error::Unspecified> { check_per_nonce_max_bytes(key.algorithm, in_out.len())?; Ok((key.algorithm.seal)( &key.inner, nonce, aad, in_out, key.cpu_features, )) } /// The additionally authenticated data (AAD) for an opening or sealing /// operation. This data is authenticated but is **not** encrypted. /// /// The type `A` could be a byte slice `&[u8]`, a byte array `[u8; N]` /// for some constant `N`, `Vec<u8>`, etc. pub struct Aad<A: AsRef<[u8]>>(A); impl<A: AsRef<[u8]>> Aad<A> { /// Construct the `Aad` from the given bytes. #[inline] pub fn from(aad: A) -> Self { Aad(aad) } } impl<A> AsRef<[u8]> for Aad<A> where A: AsRef<[u8]>, { fn as_ref(&self) -> &[u8] { self.0.as_ref() } } impl Aad<[u8; 0]> { /// Construct an empty `Aad`. pub fn empty() -> Self { Self::from([]) } } /// An AEAD key without a designated role or nonce sequence. pub struct UnboundKey { inner: KeyInner, algorithm: &'static Algorithm, cpu_features: cpu::Features, } impl core::fmt::Debug for UnboundKey { fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { f.debug_struct("UnboundKey") .field("algorithm", &self.algorithm) .finish() } } #[allow(variant_size_differences)] enum KeyInner { AesGcm(aes_gcm::Key), ChaCha20Poly1305(chacha20_poly1305::Key), } impl UnboundKey { /// Constructs an `UnboundKey`. /// /// Fails if `key_bytes.len() != ` algorithm.key_len()`. pub fn new( algorithm: &'static Algorithm, key_bytes: &[u8], ) -> Result<Self, error::Unspecified> { let cpu_features = cpu::features(); Ok(Self { inner: (algorithm.init)(key_bytes, cpu_features)?, algorithm, cpu_features, }) } /// The key's AEAD algorithm. #[inline] pub fn algorithm(&self) -> &'static Algorithm { self.algorithm } } impl From<hkdf::Okm<'_, &'static Algorithm>> for UnboundKey { fn from(okm: hkdf::Okm<&'static Algorithm>) -> Self { let mut key_bytes = [0; MAX_KEY_LEN]; let key_bytes = &mut key_bytes[..okm.len().key_len]; let algorithm = *okm.len(); okm.fill(key_bytes).unwrap(); Self::new(algorithm, key_bytes).unwrap() } } impl hkdf::KeyType for &'static Algorithm { #[inline] fn len(&self) -> usize { self.key_len() } } /// Immutable keys for use in situations where `OpeningKey`/`SealingKey` and /// `NonceSequence` cannot reasonably be used. /// /// Prefer to use `OpeningKey`/`SealingKey` and `NonceSequence` when practical. pub struct LessSafeKey { key: UnboundKey, } impl LessSafeKey { /// Constructs a `LessSafeKey` from an `UnboundKey`. pub fn new(key: UnboundKey) -> Self { Self { key } } /// Like [`OpeningKey::open_in_place()`], except it accepts an arbitrary nonce. /// /// `nonce` must be unique for every use of the key to open data. #[inline] pub fn open_in_place<'in_out, A>( &self, nonce: Nonce, aad: Aad<A>, in_out: &'in_out mut [u8], ) -> Result<&'in_out mut [u8], error::Unspecified> where A: AsRef<[u8]>, { self.open_within(nonce, aad, in_out, 0..) } /// Like [`OpeningKey::open_within()`], except it accepts an arbitrary nonce. /// /// `nonce` must be unique for every use of the key to open data. #[inline] pub fn open_within<'in_out, A>( &self, nonce: Nonce, aad: Aad<A>, in_out: &'in_out mut [u8], ciphertext_and_tag: RangeFrom<usize>, ) -> Result<&'in_out mut [u8], error::Unspecified> where A: AsRef<[u8]>, { open_within_(&self.key, nonce, aad, in_out, ciphertext_and_tag) } /// Deprecated. Renamed to `seal_in_place_append_tag()`. #[deprecated(note = "Renamed to `seal_in_place_append_tag`.")] #[inline] pub fn seal_in_place<A, InOut>( &self, nonce: Nonce, aad: Aad<A>, in_out: &mut InOut, ) -> Result<(), error::Unspecified> where A: AsRef<[u8]>, InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>, { self.seal_in_place_append_tag(nonce, aad, in_out) } /// Like [`SealingKey::seal_in_place_append_tag()`], except it accepts an /// arbitrary nonce. /// /// `nonce` must be unique for every use of the key to seal data. #[inline] pub fn seal_in_place_append_tag<A, InOut>( &self, nonce: Nonce, aad: Aad<A>, in_out: &mut InOut, ) -> Result<(), error::Unspecified> where A: AsRef<[u8]>, InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>, { self.seal_in_place_separate_tag(nonce, aad, in_out.as_mut()) .map(|tag| in_out.extend(tag.as_ref())) } /// Like `SealingKey::seal_in_place_separate_tag()`, except it accepts an /// arbitrary nonce. /// /// `nonce` must be unique for every use of the key to seal data. #[inline] pub fn seal_in_place_separate_tag<A>( &self, nonce: Nonce, aad: Aad<A>, in_out: &mut [u8], ) -> Result<Tag, error::Unspecified> where A: AsRef<[u8]>, { seal_in_place_separate_tag_(&self.key, nonce, Aad::from(aad.as_ref()), in_out) } /// The key's AEAD algorithm. #[inline] pub fn algorithm(&self) -> &'static Algorithm { &self.key.algorithm } } impl core::fmt::Debug for LessSafeKey { fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { f.debug_struct("LessSafeKey") .field("algorithm", self.algorithm()) .finish() } } /// An AEAD Algorithm. pub struct Algorithm { init: fn(key: &[u8], cpu_features: cpu::Features) -> Result<KeyInner, error::Unspecified>, seal: fn( key: &KeyInner, nonce: Nonce, aad: Aad<&[u8]>, in_out: &mut [u8], cpu_features: cpu::Features, ) -> Tag, open: fn( key: &KeyInner, nonce: Nonce, aad: Aad<&[u8]>, in_prefix_len: usize, in_out: &mut [u8], cpu_features: cpu::Features, ) -> Tag, key_len: usize, id: AlgorithmID, /// Use `max_input_len!()` to initialize this. // TODO: Make this `usize`. max_input_len: u64, } const fn max_input_len(block_len: usize, overhead_blocks_per_nonce: usize) -> u64 { // Each of our AEADs use a 32-bit block counter so the maximum is the // largest input that will not overflow the counter. ((1u64 << 32) - polyfill::u64_from_usize(overhead_blocks_per_nonce)) * polyfill::u64_from_usize(block_len) } impl Algorithm { /// The length of the key. #[inline(always)] pub fn key_len(&self) -> usize { self.key_len } /// The length of a tag. /// /// See also `MAX_TAG_LEN`. #[inline(always)] pub fn tag_len(&self) -> usize { TAG_LEN } /// The length of the nonces. #[inline(always)] pub fn nonce_len(&self) -> usize { NONCE_LEN } } derive_debug_via_id!(Algorithm); #[derive(Debug, Eq, PartialEq)] enum AlgorithmID { AES_128_GCM, AES_256_GCM, CHACHA20_POLY1305, } impl PartialEq for Algorithm { fn eq(&self, other: &Self) -> bool { self.id == other.id } } impl Eq for Algorithm {} /// An authentication tag. #[must_use] #[repr(C)] pub struct Tag(Block); impl AsRef<[u8]> for Tag { fn as_ref(&self) -> &[u8] { self.0.as_ref() } } const MAX_KEY_LEN: usize = 32; // All the AEADs we support use 128-bit tags. const TAG_LEN: usize = BLOCK_LEN; /// The maximum length of a tag for the algorithms in this module. pub const MAX_TAG_LEN: usize = TAG_LEN; fn check_per_nonce_max_bytes(alg: &Algorithm, in_out_len: usize) -> Result<(), error::Unspecified> { if polyfill::u64_from_usize(in_out_len) > alg.max_input_len { return Err(error::Unspecified); } Ok(()) } #[derive(Clone, Copy)] enum Direction { Opening { in_prefix_len: usize }, Sealing, } mod aes; mod aes_gcm; mod block; mod chacha; mod chacha20_poly1305; pub mod chacha20_poly1305_openssh; mod gcm; mod nonce; mod poly1305; pub mod quic; mod shift;