1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//! Train a dictionary from various sources.
//!
//! A dictionary can help improve the compression of small files.
//! The dictionary must be present during decompression,
//! but can be shared accross multiple "similar" files.
//!
//! Creating a dictionary using the `zstd` C library,
//! using the `zstd` command-line interface, using this library,
//! or using the `train` binary provided, should give the same result,
//! and are therefore completely compatible.
//!
//! To use, see [`Encoder::with_dictionary`] or [`Decoder::with_dictionary`].
//!
//! [`Encoder::with_dictionary`]: ../struct.Encoder.html#method.with_dictionary
//! [`Decoder::with_dictionary`]: ../struct.Decoder.html#method.with_dictionary

use crate::map_error_code;
use std::fs;

use std::io::{self, Read};
use std::path;

pub use zstd_safe::{CDict, DDict};

/// Prepared dictionary for compression
pub struct EncoderDictionary<'a> {
    cdict: CDict<'a>,
}

impl<'a> EncoderDictionary<'a> {
    /// Create prepared dictionary for compression
    ///
    /// A level of `0` uses zstd's default (currently `3`).
    pub fn new(dictionary: &'a [u8], level: i32) -> Self {
        Self {
            cdict: zstd_safe::create_cdict_by_reference(dictionary, level),
        }
    }

    /// Returns reference to `CDict` inner object
    pub fn as_cdict(&self) -> &CDict<'_> {
        &self.cdict
    }
}

/// Prepared dictionary for decompression
pub struct DecoderDictionary<'a> {
    ddict: DDict<'a>,
}

impl<'a> DecoderDictionary<'a> {
    /// Create prepared dictionary for decompression
    pub fn new(dict: &'a [u8]) -> Self {
        Self {
            ddict: zstd_safe::create_ddict_by_reference(dict),
        }
    }

    /// Returns reference to `DDict` inner object
    pub fn as_ddict(&self) -> &DDict<'_> {
        &self.ddict
    }
}

/// Train a dictionary from a big continuous chunk of data.
///
/// This is the most efficient way to train a dictionary,
/// since this is directly fed into `zstd`.
pub fn from_continuous(
    sample_data: &[u8],
    sample_sizes: &[usize],
    max_size: usize,
) -> io::Result<Vec<u8>> {
    // Complain if the lengths don't add up to the entire data.
    if sample_sizes.iter().sum::<usize>() != sample_data.len() {
        return Err(io::Error::new(
            io::ErrorKind::Other,
            "sample sizes don't add up".to_string(),
        ));
    }

    let mut result = Vec::with_capacity(max_size);
    unsafe {
        result.set_len(max_size);
        let written = zstd_safe::train_from_buffer(
            &mut result,
            sample_data,
            sample_sizes,
        )
        .map_err(map_error_code)?;
        result.set_len(written);
    }
    Ok(result)
}

/// Train a dictionary from multiple samples.
///
/// The samples will internaly be copied to a single continuous buffer,
/// so make sure you have enough memory available.
///
/// If you need to stretch your system's limits,
/// [`from_continuous`] directly uses the given slice.
///
/// [`from_continuous`]: ./fn.from_continuous.html
pub fn from_samples<S: AsRef<[u8]>>(
    samples: &[S],
    max_size: usize,
) -> io::Result<Vec<u8>> {
    // Copy every sample to a big chunk of memory
    let data: Vec<_> =
        samples.iter().flat_map(|s| s.as_ref()).cloned().collect();
    let sizes: Vec<_> = samples.iter().map(|s| s.as_ref().len()).collect();

    from_continuous(&data, &sizes, max_size)
}

/// Train a dict from a list of files.
pub fn from_files<I, P>(filenames: I, max_size: usize) -> io::Result<Vec<u8>>
where
    P: AsRef<path::Path>,
    I: IntoIterator<Item = P>,
{
    let mut buffer = Vec::new();
    let mut sizes = Vec::new();

    for filename in filenames {
        let mut file = fs::File::open(filename)?;
        let len = file.read_to_end(&mut buffer)?;
        sizes.push(len);
    }

    from_continuous(&buffer, &sizes, max_size)
}

#[cfg(test)]
mod tests {
    use std::fs;
    use std::io;
    use std::io::Read;

    use walkdir;

    #[test]
    fn test_dict_training() {
        // Train a dictionary
        let paths: Vec<_> = walkdir::WalkDir::new("src")
            .into_iter()
            .map(|entry| entry.unwrap())
            .map(|entry| entry.into_path())
            .filter(|path| path.to_str().unwrap().ends_with(".rs"))
            .collect();

        let dict = super::from_files(&paths, 4000).unwrap();

        for path in paths {
            let mut buffer = Vec::new();
            let mut file = fs::File::open(path).unwrap();
            let mut content = Vec::new();
            file.read_to_end(&mut content).unwrap();
            io::copy(
                &mut &content[..],
                &mut crate::stream::Encoder::with_dictionary(
                    &mut buffer,
                    1,
                    &dict,
                )
                .unwrap()
                .auto_finish(),
            )
            .unwrap();

            let mut result = Vec::new();
            io::copy(
                &mut crate::stream::Decoder::with_dictionary(
                    &buffer[..],
                    &dict[..],
                )
                .unwrap(),
                &mut result,
            )
            .unwrap();

            assert_eq!(&content, &result);
        }
    }
}