1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
#![crate_name = "number_prefix"] #![crate_type = "rlib"] #![crate_type = "dylib"] #![deny(unsafe_code)] #![warn(missing_copy_implementations)] #![warn(missing_debug_implementations)] #![warn(trivial_numeric_casts)] #![warn(unreachable_pub)] //! This is a library for formatting numbers with numeric prefixes, such as //! turning “3000 metres” into “3 kilometres”, or “8705 bytes” into “8.5 KiB”. //! //! //! # Usage //! //! The function [`NumberPrefix::decimal`](enum.NumberPrefix.html#method.decimal) //! returns either a pair of the resulting number and its prefix, or a //! notice that the number was too small to have any prefix applied to it. For //! example: //! //! ``` //! use number_prefix::{NumberPrefix, Standalone, Prefixed}; //! //! match NumberPrefix::decimal(8542_f32) { //! Standalone(bytes) => println!("The file is {} bytes in size", bytes), //! Prefixed(prefix, n) => println!("The file is {:.0} {}B in size", n, prefix), //! } //! ``` //! //! This will print out `"The file is 8.5 kB in size"`. The `{:.0}` part of the //! formatting string tells it to restrict the output to only one decimal place. //! This value is calculated by repeatedly dividing the number by 1000 until it //! becomes less than that, which in this case results in 8.542, which gets //! rounded down. Because only one division had to take place, the function also //! returns the decimal prefix `Kilo`, which gets converted to its //! internationally-recognised symbol when formatted as a string. //! //! If the value is too small to have any prefixes applied to it — in this case, //! if it’s under 1000 — then the standalone value will be returned: //! //! ``` //! use number_prefix::{NumberPrefix, Standalone, Prefixed}; //! //! match NumberPrefix::decimal(705_f32) { //! Standalone(bytes) => println!("The file is {} bytes in size", bytes), //! Prefixed(prefix, n) => println!("The file is {:.0} {}B in size", n, prefix), //! } //! ``` //! //! This will print out `"The file is 705 bytes in size"`, having chosen the //! other path to follow. In this particular example, the user expects different //! formatting for both bytes and kilobytes: while prefixed values are given //! more precision, there’s no point using anything other than whole numbers for //! just byte amounts. This is why the function pays attention to values without //! any prefixes — they often need to be special-cased. //! //! //! ## Binary Prefixes //! //! This library also allows you to use the *binary prefixes*, which use the //! number 1024 (2<sup>10</sup>) as the multiplier, rather than the more common 1000 //! (10<sup>3</sup>). This uses the //! [`NumberPrefix::binary`](enum.NumberPrefix.html#method.binary) function. //! For example: //! //! ``` //! use number_prefix::{NumberPrefix, Standalone, Prefixed}; //! //! match NumberPrefix::binary(8542_f32) { //! Standalone(bytes) => println!("The file is {} bytes in size", bytes), //! Prefixed(prefix, n) => println!("The file is {:.0} {}B in size", n, prefix), //! } //! ``` //! //! This will print out `"The file is 8.3 KiB in size"`. A kibibyte is slightly //! larger than a kilobyte, so the number is smaller in the result; but other //! than that, it works in exactly the same way, with the binary prefix being //! converted to a symbol automatically. //! //! //! ## Which type of prefix should I use? //! //! There is no correct answer this question! Common practice is to use //! the binary prefixes for numbers of *bytes*, while still using the decimal //! prefixes for everything else. Computers work with powers of two, rather than //! powers of ten, and by using the binary prefixes, you get a more accurate //! representation of the amount of data. //! //! //! ## Prefix Names //! //! If you need to describe your unit in actual words, rather than just with the //! symbol, import the `PrefixNames` trait, which adds methods to output the //! prefix in a variety of formats. For example: //! //! ``` //! use number_prefix::{NumberPrefix, Standalone, Prefixed, PrefixNames}; //! //! match NumberPrefix::decimal(8542_f32) { //! Standalone(bytes) => println!("The file is {} bytes in size", bytes), //! Prefixed(prefix, n) => println!("The file is {:.0} {}bytes in size", n, prefix.lower()), //! } //! ``` #![cfg_attr(not(feature = "std"), no_std)] #[cfg(not(feature = "std"))] use core::ops::{Neg, Div}; #[cfg(feature = "std")] use std::{fmt, ops::{Neg, Div}}; pub use Prefix::{ Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta, Kibi, Mibi, Gibi, Tebi, Pebi, Exbi, Zebi, Yobi, }; pub use NumberPrefix::{Standalone, Prefixed}; /// Formatting methods for prefix, for when you want to output things other /// than just the short-hand symbols. pub trait PrefixNames { /// Returns the name in uppercase, such as “KILO”. fn upper(&self) -> &'static str; /// Returns the name with the first letter capitalised, such as “Mega”. fn caps(&self) -> &'static str; /// Returns the name in lowercase, such as “giga”. fn lower(&self) -> &'static str; /// Returns the short-hand symbol, such as “T” (for “tera”). fn symbol(&self) -> &'static str; } /// A numeric prefix, either binary or decimal. #[derive(PartialEq, Eq, Clone, Copy, Debug)] pub enum Prefix { Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta, Kibi, Mibi, Gibi, Tebi, Pebi, Exbi, Zebi, Yobi, } /// The result of trying to apply a prefix to a floating-point value. #[derive(PartialEq, Eq, Clone, Debug)] pub enum NumberPrefix<F> { /// A **standalone** value is returned when the number is too small to /// have any prefixes applied to it. This is commonly a special case, so /// is handled separately. Standalone(F), /// A **prefixed** value *is* large enough for prefixes. This holds the /// prefix, as well as the resulting value. Prefixed(Prefix, F), } impl<F: Amounts> NumberPrefix<F> { /// Formats the given floating-point number using **decimal** prefixes. /// /// This function accepts both `f32` and `f64` values. If you’re trying to /// format an integer, you’ll have to cast it first. /// /// # Examples /// /// ``` /// use number_prefix::{Prefix, NumberPrefix}; /// /// assert_eq!(NumberPrefix::decimal(1_000_000_000_f32), /// NumberPrefix::Prefixed(Prefix::Giga, 1_f32)); /// ``` pub fn decimal(amount: F) -> Self { Self::format_number(amount, Amounts::NUM_1000, [Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta]) } /// Formats the given floating-point number using **binary** prefixes. /// /// This function accepts both `f32` and `f64` values. If you’re trying to /// format an integer, you’ll have to cast it first. /// /// # Examples /// /// ``` /// use number_prefix::{Prefix, NumberPrefix}; /// /// assert_eq!(NumberPrefix::binary(1_073_741_824_f64), /// NumberPrefix::Prefixed(Prefix::Gibi, 1_f64)); /// ``` pub fn binary(amount: F) -> Self { Self::format_number(amount, Amounts::NUM_1024, [Kibi, Mibi, Gibi, Tebi, Pebi, Exbi, Zebi, Yobi]) } fn format_number(mut amount: F, kilo: F, prefixes: [Prefix; 8]) -> Self { // For negative numbers, flip it to positive, do the processing, then // flip it back to negative again afterwards. let was_negative = if amount.is_negative() { amount = -amount; true } else { false }; let mut prefix = 0; while amount >= kilo && prefix < 8 { amount = amount / kilo; prefix += 1; } if was_negative { amount = -amount; } if prefix == 0 { NumberPrefix::Standalone(amount) } else { NumberPrefix::Prefixed(prefixes[prefix - 1], amount) } } } #[cfg(feature = "std")] impl fmt::Display for Prefix { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.symbol()) } } impl PrefixNames for Prefix { fn upper(&self) -> &'static str { match *self { Kilo => "KILO", Mega => "MEGA", Giga => "GIGA", Tera => "TERA", Peta => "PETA", Exa => "EXA", Zetta => "ZETTA", Yotta => "YOTTA", Kibi => "KIBI", Mibi => "MIBI", Gibi => "GIBI", Tebi => "TEBI", Pebi => "PEBI", Exbi => "EXBI", Zebi => "ZEBI", Yobi => "YOBI", } } fn caps(&self) -> &'static str { match *self { Kilo => "Kilo", Mega => "Mega", Giga => "Giga", Tera => "Tera", Peta => "Peta", Exa => "Exa", Zetta => "Zetta", Yotta => "Yotta", Kibi => "Kibi", Mibi => "Mibi", Gibi => "Gibi", Tebi => "Tebi", Pebi => "Pebi", Exbi => "Exbi", Zebi => "Zebi", Yobi => "Yobi", } } fn lower(&self) -> &'static str { match *self { Kilo => "kilo", Mega => "mega", Giga => "giga", Tera => "tera", Peta => "peta", Exa => "exa", Zetta => "zetta", Yotta => "yotta", Kibi => "kibi", Mibi => "mibi", Gibi => "gibi", Tebi => "tebi", Pebi => "pebi", Exbi => "exbi", Zebi => "zebi", Yobi => "yobi", } } fn symbol(&self) -> &'static str { match *self { Kilo => "k", Mega => "M", Giga => "G", Tera => "T", Peta => "P", Exa => "E", Zetta => "Z", Yotta => "Y", Kibi => "Ki", Mibi => "Mi", Gibi => "Gi", Tebi => "Ti", Pebi => "Pi", Exbi => "Ei", Zebi => "Zi", Yobi => "Yi", } } } /// Traits for floating-point values for both the possible multipliers. They /// need to be Copy, have defined 1000 and 1024s, and implement a bunch of /// operators. pub trait Amounts: Copy + Sized + PartialOrd + Div<Output=Self> + Neg<Output=Self> { /// The constant representing 1000, for decimal prefixes. const NUM_1000: Self; /// The constant representing 1024, for binary prefixes. const NUM_1024: Self; /// Whether this number is negative. /// This is used internally. fn is_negative(self) -> bool; } impl Amounts for f32 { const NUM_1000: Self = 1000_f32; const NUM_1024: Self = 1024_f32; fn is_negative(self) -> bool { self.is_sign_negative() } } impl Amounts for f64 { const NUM_1000: Self = 1000_f64; const NUM_1024: Self = 1024_f64; fn is_negative(self) -> bool { self.is_sign_negative() } } #[cfg(test)] mod test { use super::{NumberPrefix, Standalone, Prefixed}; use super::{Kilo, Giga, Tera, Peta, Exa, Zetta, Yotta, Kibi, Mibi, Gibi}; #[test] fn decimal_minus_one_billion() { assert_eq!(NumberPrefix::decimal(-1_000_000_000_f64), Prefixed(Giga, -1f64)) } #[test] fn decimal_minus_one() { assert_eq!(NumberPrefix::decimal(-1f64), Standalone(-1f64)) } #[test] fn decimal_0() { assert_eq!(NumberPrefix::decimal(0f64), Standalone(0f64)) } #[test] fn decimal_999() { assert_eq!(NumberPrefix::decimal(999f32), Standalone(999f32)) } #[test] fn decimal_1000() { assert_eq!(NumberPrefix::decimal(1000f32), Prefixed(Kilo, 1f32)) } #[test] fn decimal_1030() { assert_eq!(NumberPrefix::decimal(1030f32), Prefixed(Kilo, 1.03f32)) } #[test] fn decimal_1100() { assert_eq!(NumberPrefix::decimal(1100f64), Prefixed(Kilo, 1.1f64)) } #[test] fn decimal_1111() { assert_eq!(NumberPrefix::decimal(1111f64), Prefixed(Kilo, 1.111f64)) } #[test] fn binary_126456() { assert_eq!(NumberPrefix::binary(126_456f32), Prefixed(Kibi, 123.492188f32)) } #[test] fn binary_1048576() { assert_eq!(NumberPrefix::binary(1_048_576f64), Prefixed(Mibi, 1f64)) } #[test] fn binary_1073741824() { assert_eq!(NumberPrefix::binary(2_147_483_648f32), Prefixed(Gibi, 2f32)) } #[test] fn giga() { assert_eq!(NumberPrefix::decimal(1_000_000_000f64), Prefixed(Giga, 1f64)) } #[test] fn tera() { assert_eq!(NumberPrefix::decimal(1_000_000_000_000f64), Prefixed(Tera, 1f64)) } #[test] fn peta() { assert_eq!(NumberPrefix::decimal(1_000_000_000_000_000f64), Prefixed(Peta, 1f64)) } #[test] fn exa() { assert_eq!(NumberPrefix::decimal(1_000_000_000_000_000_000f64), Prefixed(Exa, 1f64)) } #[test] fn zetta() { assert_eq!(NumberPrefix::decimal(1_000_000_000_000_000_000_000f64), Prefixed(Zetta, 1f64)) } #[test] fn yotta() { assert_eq!(NumberPrefix::decimal(1_000_000_000_000_000_000_000_000f64), Prefixed(Yotta, 1f64)) } #[test] #[allow(overflowing_literals)] fn and_so_on() { // When you hit yotta, don't keep going assert_eq!(NumberPrefix::decimal(1_000_000_000_000_000_000_000_000_000f64), Prefixed(Yotta, 1000f64)) } #[test] fn example_one() { let result = match NumberPrefix::decimal(8542_f32) { Standalone(bytes) => format!("The file is {} bytes in size", bytes), Prefixed(prefix, n) => format!("The file is {:.1} {}B in size", n, prefix), }; assert_eq!(result, "The file is 8.5 kB in size"); } #[test] fn example_two() { let result = match NumberPrefix::decimal(705_f32) { Standalone(bytes) => format!("The file is {} bytes in size", bytes), Prefixed(prefix, n) => format!("The file is {:.1} {}B in size", n, prefix), }; assert_eq!(result, "The file is 705 bytes in size"); } #[test] fn example_three() { let result = match NumberPrefix::binary(8542_f32) { Standalone(bytes) => format!("The file is {} bytes in size", bytes), Prefixed(prefix, n) => format!("The file is {:.1} {}B in size", n, prefix), }; assert_eq!(result, "The file is 8.3 KiB in size"); } }