Files
addr2line
adler
ahash
aho_corasick
ansi_term
anyhow
arc_swap
arrayref
arrayvec
ascii
assert_matches
async_stream
async_stream_impl
async_trait
atty
auto_enums
auto_enums_core
auto_enums_derive
backoff
backtrace
base32
base64
bincode
bip39
bitflags
bitvec
blake3
block_buffer
block_padding
borsh
borsh_derive
borsh_derive_internal
borsh_schema_derive_internal
bs58
bstr
bv
byte_slice_cast
byte_unit
bytecount
byteorder
bytes
bzip2
bzip2_sys
cargo_build_bpf
cargo_metadata
cargo_platform
cargo_test_bpf
cast
cc
cfg_if
chrono
chrono_humanize
clap
colored
combine
console
const_fn
constant_time_eq
core_affinity
cpufeatures
crc32fast
criterion_stats
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
crunchy
crypto_mac
csv
csv_core
ctrlc
curve25519_dalek
dashmap
derivative
derive_more
derive_utils
dialoguer
digest
dir_diff
dirs_next
dirs_sys_next
dlopen
dlopen_derive
doc_comment
dtoa
ed25519
ed25519_dalek
either
encoding_rs
enum_iterator
enum_iterator_derive
env_logger
ethabi
ethbloom
ethereum
ethereum_types
evm
evm_bridge
evm_core
evm_gasometer
evm_rpc
evm_runtime
evm_state
evm_utils
failure
failure_derive
fake_simd
fast_math
fd_lock
filetime
fixed_hash
flate2
fnv
foreign_types
foreign_types_shared
form_urlencoded
fs_extra
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
gag
generic_array
gethostname
getrandom
gimli
globset
goauth
goblin
h2
half
hash256_std_hasher
hash32
hash_db
hashbrown
heck
hex
hidapi
histogram
hmac
hmac_drbg
http
http_body
httparse
httpdate
humantime
hyper
hyper_rustls
hyper_tls
idna
ieee754
impl_codec
impl_rlp
impl_serde
indexed
indexmap
indicatif
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
input_buffer
instant
iovec
ipnet
itertools
itoa
jemalloc_ctl
jemalloc_sys
jemallocator
jobserver
jsonrpc_client_transports
jsonrpc_core
jsonrpc_core_client
jsonrpc_derive
jsonrpc_http_server
jsonrpc_pubsub
jsonrpc_server_utils
jsonrpc_ws_server
keccak
keccak_hash
keccak_hasher
kernel32
lazy_static
lazycell
libc
libloading
librocksdb_sys
linked_hash_map
lock_api
log
lru
matches
maybe_uninit
memchr
memmap2
memoffset
mime
mime_guess
miniz_oxide
mio
mio_extras
miow
native_tls
net2
nix
num_cpus
num_derive
num_enum
num_enum_derive
num_integer
num_traits
number_prefix
object
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ouroboros
ouroboros_macro
parity_scale_codec
parity_scale_codec_derive
parity_ws
parking_lot
parking_lot_core
paste
paste_impl
paw
paw_attributes
paw_raw
pbkdf2
percent_encoding
pest
pickledb
pin_project
pin_project_lite
pin_utils
plain
ppv_lite86
pretty_hex
primitive_types
proc_macro2
proc_macro_crate
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
prost
prost_derive
prost_types
quote
radium
rand
rand_chacha
rand_core
rand_isaac
raptorq
rayon
rayon_core
reed_solomon_erasure
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
retain_mut
ring
ripemd160
rlp
rlp_derive
rocksdb
rpassword
rustc_demangle
rustc_hash
rustc_hex
rustls
rustversion
ryu
same_file
scopeguard
scroll
scroll_derive
sct
secp256k1
secp256k1_sys
semver
semver_parser
serde
serde_bytes
serde_cbor
serde_derive
serde_json
serde_urlencoded
serde_yaml
sha1
sha2
sha3
signal_hook
signal_hook_registry
signature
simpl
simple_logger
slab
smallvec
smpl_jwt
snafu
snafu_derive
socket2
solana_account_decoder
solana_accounts_bench
solana_banking_bench
solana_banks_client
solana_banks_interface
solana_banks_server
solana_bench_exchange
solana_bench_streamer
solana_bench_tps
solana_bench_tps_evm
solana_bpf_loader_program
solana_budget_program
solana_clap_utils
solana_cli
solana_cli_config
solana_cli_output
solana_client
solana_config_program
solana_core
solana_crate_features
solana_csv_to_validator_infos
solana_dos
solana_download_utils
solana_evm_loader_program
solana_exchange_program
solana_failure_program
solana_faucet
solana_frozen_abi
solana_frozen_abi_macro
solana_genesis
solana_ip_address
solana_ip_address_server
solana_ledger
solana_ledger_tool
solana_ledger_udev
solana_local_cluster
solana_log_analyzer
solana_logger
solana_measure
solana_merkle_root_bench
solana_merkle_tree
solana_metrics
solana_net_shaper
solana_net_utils
solana_noop_program
solana_notifier
solana_ownable
solana_perf
solana_poh_bench
solana_program
solana_program_test
solana_ramp_tps
solana_rayon_threadlimit
solana_rbpf
solana_remote_wallet
solana_runtime
solana_sdk
solana_sdk_macro
solana_secp256k1_program
solana_sleep_program
solana_stake_accounts
solana_stake_monitor
solana_stake_o_matic
solana_stake_program
solana_storage_bigtable
solana_storage_proto
solana_store_tool
solana_streamer
solana_sys_tuner
solana_tokens
solana_transaction_status
solana_upload_perf
solana_version
solana_vest_program
solana_vote_program
solana_watchtower
spin
spl_associated_token_account
spl_memo
spl_token
stable_deref_trait
standback
static_assertions
strsim
structopt
structopt_derive
subtle
symlink
syn
synstructure
sysctl
tar
tarpc
tarpc_plugins
tempfile
termcolor
terminal_size
textwrap
thiserror
thiserror_impl
thread_scoped
time
time_macros
time_macros_impl
tiny_keccak
tinyvec
tinyvec_macros
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_codec
tokio_executor
tokio_fs
tokio_io
tokio_reactor
tokio_rustls
tokio_serde
tokio_sync
tokio_tcp
tokio_threadpool
tokio_tls
tokio_util
toml
tonic
tower
tower_balance
tower_buffer
tower_discover
tower_layer
tower_limit
tower_load
tower_load_shed
tower_make
tower_ready_cache
tower_retry
tower_service
tower_timeout
tower_util
tracing
tracing_attributes
tracing_core
tracing_futures
trees
triedb
triehash
try_lock
tungstenite
typenum
ucd_trie
uint
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
unix_socket
unreachable
untrusted
url
users
utf8
utf8_width
vec_map
velas
velas_account_program
velas_faucet
velas_genesis
velas_gossip
velas_install
velas_install_init
velas_keygen
velas_test_validator
velas_validator
void
walkdir
want
webpki
webpki_roots
websocket
websocket_base
winapi
ws2_32
xattr
yaml_rust
zeroize
zeroize_derive
zstd
zstd_safe
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2018 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The ISAAC random number generator.

use core::{fmt, slice};
use core::num::Wrapping as w;
use rand_core::{RngCore, SeedableRng, Error, le};
use rand_core::block::{BlockRngCore, BlockRng};
use isaac_array::IsaacArray;

#[allow(non_camel_case_types)]
type w32 = w<u32>;

const RAND_SIZE_LEN: usize = 8;
const RAND_SIZE: usize = 1 << RAND_SIZE_LEN;

/// A random number generator that uses the ISAAC algorithm.
///
/// ISAAC stands for "Indirection, Shift, Accumulate, Add, and Count" which are
/// the principal bitwise operations employed. It is the most advanced of a
/// series of array based random number generator designed by Robert Jenkins
/// in 1996[^1][^2].
///
/// ISAAC is notably fast and produces excellent quality random numbers for
/// non-cryptographic applications.
///
/// In spite of being designed with cryptographic security in mind, ISAAC hasn't
/// been stringently cryptanalyzed and thus cryptographers do not not
/// consensually trust it to be secure. When looking for a secure RNG, prefer
/// [`Hc128Rng`] instead, which, like ISAAC, is an array-based RNG and one of
/// the stream-ciphers selected the by eSTREAM contest.
///
/// In 2006 an improvement to ISAAC was suggested by Jean-Philippe Aumasson,
/// named ISAAC+[^3]. But because the specification is not complete, because
/// there is no good implementation, and because the suggested bias may not
/// exist, it is not implemented here.
///
/// ## Overview of the ISAAC algorithm:
/// (in pseudo-code)
///
/// ```text
/// Input: a, b, c, s[256] // state
/// Output: r[256]         // results
///
/// mix(a,i) = a ^ a << 13   if i = 0 mod 4
///            a ^ a >>  6   if i = 1 mod 4
///            a ^ a <<  2   if i = 2 mod 4
///            a ^ a >> 16   if i = 3 mod 4
///
/// c = c + 1
/// b = b + c
///
/// for i in 0..256 {
///     x = s_[i]
///     a = f(a,i) + s[i+128 mod 256]
///     y = a + b + s[x>>2 mod 256]
///     s[i] = y
///     b = x + s[y>>10 mod 256]
///     r[i] = b
/// }
/// ```
///
/// Numbers are generated in blocks of 256. This means the function above only
/// runs once every 256 times you ask for a next random number. In all other
/// circumstances the last element of the results array is returned.
///
/// ISAAC therefore needs a lot of memory, relative to other non-crypto RNGs.
/// 2 * 256 * 4 = 2 kb to hold the state and results.
///
/// This implementation uses [`BlockRng`] to implement the [`RngCore`] methods.
///
/// ## References
/// [^1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number generator*](
///       http://burtleburtle.net/bob/rand/isaacafa.html)
///
/// [^2]: Bob Jenkins, [*ISAAC and RC4*](
///       http://burtleburtle.net/bob/rand/isaac.html)
///
/// [^3]: Jean-Philippe Aumasson, [*On the pseudo-random generator ISAAC*](
///       https://eprint.iacr.org/2006/438)
///
/// [`Hc128Rng`]: ../../rand_hc/struct.Hc128Rng.html
/// [`BlockRng`]: ../../rand_core/block/struct.BlockRng.html
/// [`RngCore`]: ../../rand_core/trait.RngCore.html
#[derive(Clone, Debug)]
#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
pub struct IsaacRng(BlockRng<IsaacCore>);

impl RngCore for IsaacRng {
    #[inline(always)]
    fn next_u32(&mut self) -> u32 {
        self.0.next_u32()
    }

    #[inline(always)]
    fn next_u64(&mut self) -> u64 {
        self.0.next_u64()
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        self.0.fill_bytes(dest)
    }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        self.0.try_fill_bytes(dest)
    }
}

impl SeedableRng for IsaacRng {
    type Seed = <IsaacCore as SeedableRng>::Seed;

    fn from_seed(seed: Self::Seed) -> Self {
        IsaacRng(BlockRng::<IsaacCore>::from_seed(seed))
    }
    
    /// Create an ISAAC random number generator using an `u64` as seed.
    /// If `seed == 0` this will produce the same stream of random numbers as
    /// the reference implementation when used unseeded.
    fn seed_from_u64(seed: u64) -> Self {
        IsaacRng(BlockRng::<IsaacCore>::seed_from_u64(seed))
    }

    fn from_rng<S: RngCore>(rng: S) -> Result<Self, Error> {
        BlockRng::<IsaacCore>::from_rng(rng).map(|rng| IsaacRng(rng))
    }
}

impl IsaacRng {
    /// Create an ISAAC random number generator using an `u64` as seed.
    /// If `seed == 0` this will produce the same stream of random numbers as
    /// the reference implementation when used unseeded.
    #[deprecated(since="0.6.0", note="use SeedableRng::seed_from_u64 instead")]
    pub fn new_from_u64(seed: u64) -> Self {
        Self::seed_from_u64(seed)
    }
}

/// The core of `IsaacRng`, used with `BlockRng`.
#[derive(Clone)]
#[cfg_attr(feature="serde1", derive(Serialize, Deserialize))]
pub struct IsaacCore {
    #[cfg_attr(feature="serde1",serde(with="super::isaac_array::isaac_array_serde"))]
    mem: [w32; RAND_SIZE],
    a: w32,
    b: w32,
    c: w32,
}

// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for IsaacCore {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "IsaacCore {{}}")
    }
}

impl BlockRngCore for IsaacCore {
    type Item = u32;
    type Results = IsaacArray<Self::Item>;

    /// Refills the output buffer, `results`. See also the pseudocode desciption
    /// of the algorithm in the [`IsaacRng`] documentation.
    ///
    /// Optimisations used (similar to the reference implementation):
    /// 
    /// - The loop is unrolled 4 times, once for every constant of mix().
    /// - The contents of the main loop are moved to a function `rngstep`, to
    ///   reduce code duplication.
    /// - We use local variables for a and b, which helps with optimisations.
    /// - We split the main loop in two, one that operates over 0..128 and one
    ///   over 128..256. This way we can optimise out the addition and modulus
    ///   from `s[i+128 mod 256]`.
    /// - We maintain one index `i` and add `m` or `m2` as base (m2 for the
    ///   `s[i+128 mod 256]`), relying on the optimizer to turn it into pointer
    ///   arithmetic.
    /// - We fill `results` backwards. The reference implementation reads values
    ///   from `results` in reverse. We read them in the normal direction, to
    ///   make `fill_bytes` a memcopy. To maintain compatibility we fill in
    ///   reverse.
    /// 
    /// [`IsaacRng`]: struct.IsaacRng.html
    fn generate(&mut self, results: &mut IsaacArray<Self::Item>) {
        self.c += w(1);
        // abbreviations
        let mut a = self.a;
        let mut b = self.b + self.c;
        const MIDPOINT: usize = RAND_SIZE / 2;

        #[inline]
        fn ind(mem:&[w32; RAND_SIZE], v: w32, amount: usize) -> w32 {
            let index = (v >> amount).0 as usize % RAND_SIZE;
            mem[index]
        }

        #[inline]
        fn rngstep(mem: &mut [w32; RAND_SIZE],
                   results: &mut [u32; RAND_SIZE],
                   mix: w32,
                   a: &mut w32,
                   b: &mut w32,
                   base: usize,
                   m: usize,
                   m2: usize) {
            let x = mem[base + m];
            *a = mix + mem[base + m2];
            let y = *a + *b + ind(&mem, x, 2);
            mem[base + m] = y;
            *b = x + ind(&mem, y, 2 + RAND_SIZE_LEN);
            results[RAND_SIZE - 1 - base - m] = (*b).0;
        }

        let mut m = 0;
        let mut m2 = MIDPOINT;
        for i in (0..MIDPOINT/4).map(|i| i * 4) {
            rngstep(&mut self.mem, results, a ^ (a << 13), &mut a, &mut b, i + 0, m, m2);
            rngstep(&mut self.mem, results, a ^ (a >> 6 ),  &mut a, &mut b, i + 1, m, m2);
            rngstep(&mut self.mem, results, a ^ (a << 2 ),  &mut a, &mut b, i + 2, m, m2);
            rngstep(&mut self.mem, results, a ^ (a >> 16),  &mut a, &mut b, i + 3, m, m2);
        }

        m = MIDPOINT;
        m2 = 0;
        for i in (0..MIDPOINT/4).map(|i| i * 4) {
            rngstep(&mut self.mem, results, a ^ (a << 13), &mut a, &mut b, i + 0, m, m2);
            rngstep(&mut self.mem, results, a ^ (a >> 6 ),  &mut a, &mut b, i + 1, m, m2);
            rngstep(&mut self.mem, results, a ^ (a << 2 ),  &mut a, &mut b, i + 2, m, m2);
            rngstep(&mut self.mem, results, a ^ (a >> 16),  &mut a, &mut b, i + 3, m, m2);
        }

        self.a = a;
        self.b = b;
    }
}

impl IsaacCore {
    /// Create a new ISAAC random number generator.
    ///
    /// The author Bob Jenkins describes how to best initialize ISAAC here:
    /// <https://rt.cpan.org/Public/Bug/Display.html?id=64324>
    /// The answer is included here just in case:
    ///
    /// "No, you don't need a full 8192 bits of seed data. Normal key sizes will
    /// do fine, and they should have their expected strength (eg a 40-bit key
    /// will take as much time to brute force as 40-bit keys usually will). You
    /// could fill the remainder with 0, but set the last array element to the
    /// length of the key provided (to distinguish keys that differ only by
    /// different amounts of 0 padding). You do still need to call `randinit()`
    /// to make sure the initial state isn't uniform-looking."
    /// "After publishing ISAAC, I wanted to limit the key to half the size of
    /// `r[]`, and repeat it twice. That would have made it hard to provide a
    /// key that sets the whole internal state to anything convenient. But I'd
    /// already published it."
    ///
    /// And his answer to the question "For my code, would repeating the key
    /// over and over to fill 256 integers be a better solution than
    /// zero-filling, or would they essentially be the same?":
    /// "If the seed is under 32 bytes, they're essentially the same, otherwise
    /// repeating the seed would be stronger. randinit() takes a chunk of 32
    /// bytes, mixes it, and combines that with the next 32 bytes, et cetera.
    /// Then loops over all the elements the same way a second time."
    #[inline]
    fn init(mut mem: [w32; RAND_SIZE], rounds: u32) -> Self {
        fn mix(a: &mut w32, b: &mut w32, c: &mut w32, d: &mut w32,
               e: &mut w32, f: &mut w32, g: &mut w32, h: &mut w32) {
            *a ^= *b << 11; *d += *a; *b += *c;
            *b ^= *c >> 2;  *e += *b; *c += *d;
            *c ^= *d << 8;  *f += *c; *d += *e;
            *d ^= *e >> 16; *g += *d; *e += *f;
            *e ^= *f << 10; *h += *e; *f += *g;
            *f ^= *g >> 4;  *a += *f; *g += *h;
            *g ^= *h << 8;  *b += *g; *h += *a;
            *h ^= *a >> 9;  *c += *h; *a += *b;
        }

        // These numbers are the result of initializing a...h with the
        // fractional part of the golden ratio in binary (0x9e3779b9)
        // and applying mix() 4 times.
        let mut a = w(0x1367df5a);
        let mut b = w(0x95d90059);
        let mut c = w(0xc3163e4b);
        let mut d = w(0x0f421ad8);
        let mut e = w(0xd92a4a78);
        let mut f = w(0xa51a3c49);
        let mut g = w(0xc4efea1b);
        let mut h = w(0x30609119);

        // Normally this should do two passes, to make all of the seed effect
        // all of `mem`
        for _ in 0..rounds {
            for i in (0..RAND_SIZE/8).map(|i| i * 8) {
                a += mem[i  ]; b += mem[i+1];
                c += mem[i+2]; d += mem[i+3];
                e += mem[i+4]; f += mem[i+5];
                g += mem[i+6]; h += mem[i+7];
                mix(&mut a, &mut b, &mut c, &mut d,
                    &mut e, &mut f, &mut g, &mut h);
                mem[i  ] = a; mem[i+1] = b;
                mem[i+2] = c; mem[i+3] = d;
                mem[i+4] = e; mem[i+5] = f;
                mem[i+6] = g; mem[i+7] = h;
            }
        }

        Self { mem, a: w(0), b: w(0), c: w(0) }
    }
}

impl SeedableRng for IsaacCore {
    type Seed = [u8; 32];

    fn from_seed(seed: Self::Seed) -> Self {
        let mut seed_u32 = [0u32; 8];
        le::read_u32_into(&seed, &mut seed_u32);
        // Convert the seed to `Wrapping<u32>` and zero-extend to `RAND_SIZE`.
        let mut seed_extended = [w(0); RAND_SIZE];
        for (x, y) in seed_extended.iter_mut().zip(seed_u32.iter()) {
            *x = w(*y);
        }
        Self::init(seed_extended, 2)
    }
    
    /// Create an ISAAC random number generator using an `u64` as seed.
    /// If `seed == 0` this will produce the same stream of random numbers as
    /// the reference implementation when used unseeded.
    fn seed_from_u64(seed: u64) -> Self {
        let mut key = [w(0); RAND_SIZE];
        key[0] = w(seed as u32);
        key[1] = w((seed >> 32) as u32);
        // Initialize with only one pass.
        // A second pass does not improve the quality here, because all of the
        // seed was already available in the first round.
        // Not doing the second pass has the small advantage that if
        // `seed == 0` this method produces exactly the same state as the
        // reference implementation when used unseeded.
        Self::init(key, 1)
    }

    fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
        // Custom `from_rng` implementation that fills a seed with the same size
        // as the entire state.
        let mut seed = [w(0u32); RAND_SIZE];
        unsafe {
            let ptr = seed.as_mut_ptr() as *mut u8;

            let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE * 4);
            rng.try_fill_bytes(slice)?;
        }
        for i in seed.iter_mut() {
            *i = w(i.0.to_le());
        }

        Ok(Self::init(seed, 2))
    }
}

#[cfg(test)]
mod test {
    use rand_core::{RngCore, SeedableRng};
    use super::IsaacRng;

    #[test]
    fn test_isaac_construction() {
        // Test that various construction techniques produce a working RNG.
        let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
                    0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
        let mut rng1 = IsaacRng::from_seed(seed);
        assert_eq!(rng1.next_u32(), 2869442790);

        let mut rng2 = IsaacRng::from_rng(rng1).unwrap();
        assert_eq!(rng2.next_u32(), 3094074039);
    }

    #[test]
    fn test_isaac_true_values_32() {
        let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
                     57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
        let mut rng1 = IsaacRng::from_seed(seed);
        let mut results = [0u32; 10];
        for i in results.iter_mut() { *i = rng1.next_u32(); }
        let expected = [
            2558573138, 873787463, 263499565, 2103644246, 3595684709,
            4203127393, 264982119, 2765226902, 2737944514, 3900253796];
        assert_eq!(results, expected);

        let seed = [57,48,0,0, 50,9,1,0, 49,212,0,0, 148,38,0,0,
                    0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
        let mut rng2 = IsaacRng::from_seed(seed);
        // skip forward to the 10000th number
        for _ in 0..10000 { rng2.next_u32(); }

        for i in results.iter_mut() { *i = rng2.next_u32(); }
        let expected = [
            3676831399, 3183332890, 2834741178, 3854698763, 2717568474,
            1576568959, 3507990155, 179069555, 141456972, 2478885421];
        assert_eq!(results, expected);
    }

    #[test]
    fn test_isaac_true_values_64() {
        // As above, using little-endian versions of above values
        let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
                    57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
        let mut rng = IsaacRng::from_seed(seed);
        let mut results = [0u64; 5];
        for i in results.iter_mut() { *i = rng.next_u64(); }
        let expected = [
            3752888579798383186, 9035083239252078381,18052294697452424037,
            11876559110374379111, 16751462502657800130];
        assert_eq!(results, expected);
    }

    #[test]
    fn test_isaac_true_bytes() {
        let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
                     57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
        let mut rng = IsaacRng::from_seed(seed);
        let mut results = [0u8; 32];
        rng.fill_bytes(&mut results);
        // Same as first values in test_isaac_true_values as bytes in LE order
        let expected = [82, 186, 128, 152, 71, 240, 20, 52,
                        45, 175, 180, 15, 86, 16, 99, 125,
                        101, 203, 81, 214, 97, 162, 134, 250,
                        103, 78, 203, 15, 150, 3, 210, 164];
        assert_eq!(results, expected);
    }

    #[test]
    fn test_isaac_new_uninitialized() {
        // Compare the results from initializing `IsaacRng` with
        // `seed_from_u64(0)`, to make sure it is the same as the reference
        // implementation when used uninitialized.
        // Note: We only test the first 16 integers, not the full 256 of the
        // first block.
        let mut rng = IsaacRng::seed_from_u64(0);
        let mut results = [0u32; 16];
        for i in results.iter_mut() { *i = rng.next_u32(); }
        let expected: [u32; 16] = [
            0x71D71FD2, 0xB54ADAE7, 0xD4788559, 0xC36129FA,
            0x21DC1EA9, 0x3CB879CA, 0xD83B237F, 0xFA3CE5BD,
            0x8D048509, 0xD82E9489, 0xDB452848, 0xCA20E846,
            0x500F972E, 0x0EEFF940, 0x00D6B993, 0xBC12C17F];
        assert_eq!(results, expected);
    }

    #[test]
    fn test_isaac_clone() {
        let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
                     57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
        let mut rng1 = IsaacRng::from_seed(seed);
        let mut rng2 = rng1.clone();
        for _ in 0..16 {
            assert_eq!(rng1.next_u32(), rng2.next_u32());
        }
    }

    #[test]
    #[cfg(feature="serde1")]
    fn test_isaac_serde() {
        use bincode;
        use std::io::{BufWriter, BufReader};

        let seed = [1,0,0,0, 23,0,0,0, 200,1,0,0, 210,30,0,0,
                     57,48,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
        let mut rng = IsaacRng::from_seed(seed);

        let buf: Vec<u8> = Vec::new();
        let mut buf = BufWriter::new(buf);
        bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");

        let buf = buf.into_inner().unwrap();
        let mut read = BufReader::new(&buf[..]);
        let mut deserialized: IsaacRng = bincode::deserialize_from(&mut read).expect("Could not deserialize");

        for _ in 0..300 { // more than the 256 buffered results
            assert_eq!(rng.next_u32(), deserialized.next_u32());
        }
    }
}