1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*! Bit management The `BitStore` trait defines constants and associated functions suitable for managing the bit patterns of a fundamental, and is the constraint for the storage type of the data structures of the rest of the crate. The other types in this module provide stronger rules about how indices map to concrete bits in fundamental elements. They are implementation details, and are not exported in the prelude. !*/ use crate::{ access::BitAccess, indices::BitIdx, order::BitOrder, }; use core::{ convert::TryInto, fmt::{ Binary, Debug, Display, LowerHex, UpperHex, }, mem::size_of, ops::{ BitAnd, BitAndAssign, BitOr, BitOrAssign, Not, Shl, ShlAssign, Shr, ShrAssign, }, }; use radium::marker::BitOps; #[cfg(feature = "atomic")] use core::sync::atomic; #[cfg(not(feature = "atomic"))] use core::cell::Cell; /** Generalizes over the fundamental types for use in `bitvec` data structures. This trait must only be implemented on unsigned integer primitives with full alignment. It cannot be implemented on `u128` on any architecture, or on `u64` on 32-bit systems. The `Sealed` supertrait ensures that this can only be implemented locally, and will never be implemented by downstream crates on new types. **/ pub trait BitStore: // Forbid external implementation Sealed + Binary // Element-wise binary manipulation + BitAnd<Self, Output = Self> + BitAndAssign<Self> + BitOr<Self, Output = Self> + BitOrAssign<Self> // Permit indexing into a generic array + Copy + Debug + Display // Permit testing a value against 0 in `get()`. + Eq // Rust treats numeric literals in code as vaguely typed and does not make // them concrete until long after trait expansion, so this enables building // a concrete Self value from a numeric literal. + From<u8> // Permit extending into a `usize`. + TryInto<usize> + LowerHex + Not<Output = Self> + Send + Shl<u8, Output = Self> + ShlAssign<u8> + Shr<u8, Output = Self> + ShrAssign<u8> // Allow direct access to a concrete implementor type. + Sized + Sync + UpperHex + BitOps { /// The width, in bits, of this type. const BITS: u8 = size_of::<Self>() as u8 * 8; /// The number of bits required to index a bit inside the type. This is /// always log<sub>2</sub> of the type’s bit width. const INDX: u8 = Self::BITS.trailing_zeros() as u8; /// The bitmask to turn an arbitrary number into a bit index. Bit indices /// are always stored in the lowest bits of an index value. const MASK: u8 = Self::BITS - 1; /// The value with all bits unset. const FALSE: Self; /// The value with all bits set. const TRUE: Self; /// Name of the implementing type. This is only necessary until the compiler /// stabilizes `type_name()`. const TYPENAME: &'static str; /// Shared/mutable access wrapper. /// /// Within `&BitSlice` and `&mut BitSlice` contexts, the `Access` type /// governs all access to underlying memory that may be contended by /// multiple slices. When a codepath knows that it has full, uncontended /// ownership of a memory element of `Self`, and no other codepath may /// observe or modify it, then that codepath may skip the `Access` type and /// use plain accessors. type Access: BitAccess<Self>; /// Gets a specific bit in an element. /// /// # Safety /// /// This method cannot be called from within an `&BitSlice` context; it may /// only be called by construction of an `&Self` reference from a `Self` /// element directly. /// /// # Parameters /// /// - `&self` /// - `place`: A bit index in the element. The bit under this index, as /// governed by the `O` `BitOrder`, will be retrieved as a `bool`. /// /// # Returns /// /// The value of the bit under `place`. /// /// # Type Parameters /// /// - `O`: A `BitOrder` implementation to translate the index into a position. fn get<O>(&self, place: BitIdx<Self>) -> bool where O: BitOrder { *self & *O::mask(place) != Self::FALSE } /// Sets a specific bit in an element to a given value. /// /// # Safety /// /// This method cannot be called from within an `&mut BitSlice` context; it /// may only be called by construction of an `&mut Self` reference from a /// `Self` element directly. /// /// # Parameters /// /// - `place`: A bit index in the element. The bit under this index, as /// governed by the `O` `BitOrder`, will be set according to `value`. /// /// # Type Parameters /// /// - `O`: A `BitOrder` implementation to translate the index into a position. fn set<O>(&mut self, place: BitIdx<Self>, value: bool) where O: BitOrder { let mask = *O::mask(place); if value { *self |= mask; } else { *self &= !mask; } } /// Counts how many bits in `self` are set to `1`. /// /// This zero-extends `self` to `usize`, and uses the [`usize::count_ones`] /// inherent method. /// /// # Parameters /// /// - `self` /// /// # Returns /// /// The number of bits in `self` set to `1`. This is a `usize` instead of a /// `u32` in order to ease arithmetic throughout the crate. /// /// # Examples /// /// ```rust /// use bitvec::prelude::BitStore; /// assert_eq!(BitStore::count_ones(0u8), 0); /// assert_eq!(BitStore::count_ones(128u8), 1); /// assert_eq!(BitStore::count_ones(192u8), 2); /// assert_eq!(BitStore::count_ones(224u8), 3); /// assert_eq!(BitStore::count_ones(240u8), 4); /// assert_eq!(BitStore::count_ones(248u8), 5); /// assert_eq!(BitStore::count_ones(252u8), 6); /// assert_eq!(BitStore::count_ones(254u8), 7); /// assert_eq!(BitStore::count_ones(255u8), 8); /// ``` /// /// [`usize::count_ones`]: https://doc.rust-lang.org/stable/std/primitive.usize.html#method.count_ones #[inline(always)] fn count_ones(self) -> usize { let extended = self.try_into() .unwrap_or_else(|_| unreachable!("This conversion is infallible")); // Ensure that this calls the inherent method in `impl usize`, not the // trait method in `impl BitStore for usize`. usize::count_ones(extended) as usize } /// Counts how many bits in `self` are set to `0`. /// /// This inverts `self`, so all `0` bits are `1` and all `1` bits are `0`, /// then zero-extends `self` to `usize` and uses the [`usize::count_ones`] /// inherent method. /// /// # Parameters /// /// - `self` /// /// # Returns /// /// The number of bits in `self` set to `0`. This is a `usize` instead of a /// `u32` in order to ease arithmetic throughout the crate. /// /// # Examples /// /// ```rust /// use bitvec::prelude::BitStore; /// assert_eq!(BitStore::count_zeros(0u8), 8); /// assert_eq!(BitStore::count_zeros(1u8), 7); /// assert_eq!(BitStore::count_zeros(3u8), 6); /// assert_eq!(BitStore::count_zeros(7u8), 5); /// assert_eq!(BitStore::count_zeros(15u8), 4); /// assert_eq!(BitStore::count_zeros(31u8), 3); /// assert_eq!(BitStore::count_zeros(63u8), 2); /// assert_eq!(BitStore::count_zeros(127u8), 1); /// assert_eq!(BitStore::count_zeros(255u8), 0); /// ``` /// /// [`usize::count_ones`]: https://doc.rust-lang.org/stable/std/primitive.usize.html#method.count_ones #[inline(always)] fn count_zeros(self) -> usize { // invert (0 becomes 1, 1 becomes 0), zero-extend, count ones <Self as BitStore>::count_ones(!self) } } /** Compute the number of elements required to store a number of bits. # Parameters - `bits`: The number of bits to store in an element `T` array. # Returns The number of elements `T` required to store `bits`. Because this is a const function, when `bits` is a const-expr, this function can be used in array types `[T; elts(len)]`. **/ #[doc(hidden)] pub const fn elts<T>(bits: usize) -> usize { let width: usize = size_of::<T>() * 8; bits / width + (bits % width != 0) as usize } /// Batch implementation of `BitStore` for the appropriate fundamental integers. macro_rules! bitstore { ($($t:ty => $bits:literal , $atom:ty ;)*) => { $( impl BitStore for $t { const TYPENAME: &'static str = stringify!($t); const FALSE: Self = 0; const TRUE: Self = !0; #[cfg(feature = "atomic")] type Access = $atom; #[cfg(not(feature = "atomic"))] type Access = Cell<Self>; #[inline(always)] fn count_ones(self) -> usize { Self::count_ones(self) as usize } } )* }; } bitstore! { u8 => 1, atomic::AtomicU8; u16 => 2, atomic::AtomicU16; u32 => 4, atomic::AtomicU32; } #[cfg(target_pointer_width = "32")] bitstore! { usize => 4, atomic::AtomicUsize; } #[cfg(target_pointer_width = "64")] bitstore! { u64 => 8, atomic::AtomicU64; usize => 8, atomic::AtomicUsize; } #[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))] compile_fail!("This architecture is currently not supported. File an issue at https://github.com/myrrlyn/bitvec"); /** Marker trait to seal `BitStore` against downstream implementation. This trait is public in the module, so that other modules in the crate can use it, but so long as it is not exported by the crate root and this module is private, this trait effectively forbids downstream implementation of the `BitStore` trait. **/ #[doc(hidden)] pub trait Sealed {} macro_rules! seal { ($($t:ty),*) => { $( impl Sealed for $t {} )* }; } seal!(u8, u16, u32, usize); #[cfg(target_pointer_width = "64")] seal!(u64);