1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
use crate::send_transaction_service::{SendTransactionService, TransactionInfo};
use bincode::{deserialize, serialize};
use futures::{
    future,
    prelude::stream::{self, StreamExt},
};
use solana_banks_interface::{
    Banks, BanksRequest, BanksResponse, TransactionConfirmationStatus, TransactionStatus,
};
use solana_runtime::{bank::Bank, bank_forks::BankForks, commitment::BlockCommitmentCache};
use solana_sdk::{
    account::Account,
    clock::Slot,
    commitment_config::CommitmentLevel,
    fee_calculator::FeeCalculator,
    hash::Hash,
    pubkey::Pubkey,
    signature::Signature,
    transaction::{self, Transaction},
};
use std::{
    io,
    net::{Ipv4Addr, SocketAddr},
    sync::{
        mpsc::{channel, Receiver, Sender},
        Arc, RwLock,
    },
    thread::Builder,
    time::Duration,
};
use tarpc::{
    context::Context,
    rpc::{transport::channel::UnboundedChannel, ClientMessage, Response},
    serde_transport::tcp,
    server::{self, Channel, Handler},
    transport,
};
use tokio::time::sleep;
use tokio_serde::formats::Bincode;

#[derive(Clone)]
struct BanksServer {
    bank_forks: Arc<RwLock<BankForks>>,
    block_commitment_cache: Arc<RwLock<BlockCommitmentCache>>,
    transaction_sender: Sender<TransactionInfo>,
}

impl BanksServer {
    /// Return a BanksServer that forwards transactions to the
    /// given sender. If unit-testing, those transactions can go to
    /// a bank in the given BankForks. Otherwise, the receiver should
    /// forward them to a validator in the leader schedule.
    fn new(
        bank_forks: Arc<RwLock<BankForks>>,
        block_commitment_cache: Arc<RwLock<BlockCommitmentCache>>,
        transaction_sender: Sender<TransactionInfo>,
    ) -> Self {
        Self {
            bank_forks,
            block_commitment_cache,
            transaction_sender,
        }
    }

    fn run(bank_forks: Arc<RwLock<BankForks>>, transaction_receiver: Receiver<TransactionInfo>) {
        while let Ok(info) = transaction_receiver.recv() {
            let mut transaction_infos = vec![info];
            while let Ok(info) = transaction_receiver.try_recv() {
                transaction_infos.push(info);
            }
            let transactions: Vec<_> = transaction_infos
                .into_iter()
                .map(|info| deserialize(&info.wire_transaction).unwrap())
                .collect();
            let bank = bank_forks.read().unwrap().working_bank();
            let _ = bank.process_transactions(&transactions);
        }
    }

    /// Useful for unit-testing
    fn new_loopback(
        bank_forks: Arc<RwLock<BankForks>>,
        block_commitment_cache: Arc<RwLock<BlockCommitmentCache>>,
    ) -> Self {
        let (transaction_sender, transaction_receiver) = channel();
        let bank = bank_forks.read().unwrap().working_bank();
        let slot = bank.slot();
        {
            // ensure that the commitment cache and bank are synced
            let mut w_block_commitment_cache = block_commitment_cache.write().unwrap();
            w_block_commitment_cache.set_all_slots(slot, slot);
        }
        let server_bank_forks = bank_forks.clone();
        Builder::new()
            .name("solana-bank-forks-client".to_string())
            .spawn(move || Self::run(server_bank_forks, transaction_receiver))
            .unwrap();
        Self::new(bank_forks, block_commitment_cache, transaction_sender)
    }

    fn slot(&self, commitment: CommitmentLevel) -> Slot {
        self.block_commitment_cache
            .read()
            .unwrap()
            .slot_with_commitment(commitment)
    }

    fn bank(&self, commitment: CommitmentLevel) -> Arc<Bank> {
        self.bank_forks.read().unwrap()[self.slot(commitment)].clone()
    }

    async fn poll_signature_status(
        self,
        signature: &Signature,
        blockhash: &Hash,
        last_valid_slot: Slot,
        commitment: CommitmentLevel,
    ) -> Option<transaction::Result<()>> {
        let mut status = self
            .bank(commitment)
            .get_signature_status_with_blockhash(signature, blockhash);
        while status.is_none() {
            sleep(Duration::from_millis(200)).await;
            let bank = self.bank(commitment);
            if bank.slot() > last_valid_slot {
                break;
            }
            status = bank.get_signature_status_with_blockhash(signature, blockhash);
        }
        status
    }
}

fn verify_transaction(transaction: &Transaction) -> transaction::Result<()> {
    if let Err(err) = transaction.verify() {
        Err(err)
    } else if let Err(err) = transaction.verify_precompiles() {
        Err(err)
    } else {
        Ok(())
    }
}

#[tarpc::server]
impl Banks for BanksServer {
    async fn send_transaction_with_context(self, _: Context, transaction: Transaction) {
        let blockhash = &transaction.message.recent_blockhash;
        let last_valid_slot = self
            .bank_forks
            .read()
            .unwrap()
            .root_bank()
            .get_blockhash_last_valid_slot(&blockhash)
            .unwrap();
        let signature = transaction.signatures.get(0).cloned().unwrap_or_default();
        let info =
            TransactionInfo::new(signature, serialize(&transaction).unwrap(), last_valid_slot);
        self.transaction_sender.send(info).unwrap();
    }

    async fn get_fees_with_commitment_and_context(
        self,
        _: Context,
        commitment: CommitmentLevel,
    ) -> (FeeCalculator, Hash, Slot) {
        let bank = self.bank(commitment);
        let (blockhash, fee_calculator) = bank.last_blockhash_with_fee_calculator();
        let last_valid_slot = bank.get_blockhash_last_valid_slot(&blockhash).unwrap();
        (fee_calculator, blockhash, last_valid_slot)
    }

    async fn get_transaction_status_with_context(
        self,
        _: Context,
        signature: Signature,
    ) -> Option<TransactionStatus> {
        let bank = self.bank(CommitmentLevel::Processed);
        let (slot, status) = bank.get_signature_status_slot(&signature)?;
        let r_block_commitment_cache = self.block_commitment_cache.read().unwrap();

        let optimistically_confirmed_bank = self.bank(CommitmentLevel::Confirmed);
        let optimistically_confirmed =
            optimistically_confirmed_bank.get_signature_status_slot(&signature);

        let confirmations = if r_block_commitment_cache.root() >= slot
            && r_block_commitment_cache.highest_confirmed_root() >= slot
        {
            None
        } else {
            r_block_commitment_cache
                .get_confirmation_count(slot)
                .or(Some(0))
        };
        Some(TransactionStatus {
            slot,
            confirmations,
            err: status.err(),
            confirmation_status: if confirmations.is_none() {
                Some(TransactionConfirmationStatus::Finalized)
            } else if optimistically_confirmed.is_some() {
                Some(TransactionConfirmationStatus::Confirmed)
            } else {
                Some(TransactionConfirmationStatus::Processed)
            },
        })
    }

    async fn get_slot_with_context(self, _: Context, commitment: CommitmentLevel) -> Slot {
        self.slot(commitment)
    }

    async fn process_transaction_with_commitment_and_context(
        self,
        _: Context,
        transaction: Transaction,
        commitment: CommitmentLevel,
    ) -> Option<transaction::Result<()>> {
        if let Err(err) = verify_transaction(&transaction) {
            return Some(Err(err));
        }

        let blockhash = &transaction.message.recent_blockhash;
        let last_valid_slot = self
            .bank_forks
            .read()
            .unwrap()
            .root_bank()
            .get_blockhash_last_valid_slot(blockhash)
            .unwrap();
        let signature = transaction.signatures.get(0).cloned().unwrap_or_default();
        let info =
            TransactionInfo::new(signature, serialize(&transaction).unwrap(), last_valid_slot);
        self.transaction_sender.send(info).unwrap();
        self.poll_signature_status(&signature, blockhash, last_valid_slot, commitment)
            .await
    }

    async fn get_account_with_commitment_and_context(
        self,
        _: Context,
        address: Pubkey,
        commitment: CommitmentLevel,
    ) -> Option<Account> {
        let bank = self.bank(commitment);
        bank.get_account(&address)
    }
}

pub async fn start_local_server(
    bank_forks: Arc<RwLock<BankForks>>,
    block_commitment_cache: Arc<RwLock<BlockCommitmentCache>>,
) -> UnboundedChannel<Response<BanksResponse>, ClientMessage<BanksRequest>> {
    let banks_server = BanksServer::new_loopback(bank_forks, block_commitment_cache);
    let (client_transport, server_transport) = transport::channel::unbounded();
    let server = server::new(server::Config::default())
        .incoming(stream::once(future::ready(server_transport)))
        .respond_with(banks_server.serve());
    tokio::spawn(server);
    client_transport
}

pub async fn start_tcp_server(
    listen_addr: SocketAddr,
    tpu_addr: SocketAddr,
    bank_forks: Arc<RwLock<BankForks>>,
    block_commitment_cache: Arc<RwLock<BlockCommitmentCache>>,
) -> io::Result<()> {
    // Note: These settings are copied straight from the tarpc example.
    let server = tcp::listen(listen_addr, Bincode::default)
        .await?
        // Ignore accept errors.
        .filter_map(|r| future::ready(r.ok()))
        .map(server::BaseChannel::with_defaults)
        // Limit channels to 1 per IP.
        .max_channels_per_key(1, |t| {
            t.as_ref()
                .peer_addr()
                .map(|x| x.ip())
                .unwrap_or_else(|_| Ipv4Addr::new(0, 0, 0, 0).into())
        })
        // serve is generated by the service attribute. It takes as input any type implementing
        // the generated Banks trait.
        .map(move |chan| {
            let (sender, receiver) = channel();

            SendTransactionService::new(tpu_addr, &bank_forks, receiver);

            let server =
                BanksServer::new(bank_forks.clone(), block_commitment_cache.clone(), sender);
            chan.respond_with(server.serve()).execute()
        })
        // Max 10 channels.
        .buffer_unordered(10)
        .for_each(|_| async {});

    server.await;
    Ok(())
}