1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// -*- mode: rust; -*-
//
// This file is part of ed25519-dalek.
// Copyright (c) 2017-2019 isis lovecruft
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <[email protected]>

//! An ed25519 signature.

use core::convert::TryFrom;
use core::fmt::Debug;

use curve25519_dalek::edwards::CompressedEdwardsY;
use curve25519_dalek::scalar::Scalar;
use ed25519::signature::Signature as _;

use crate::constants::*;
use crate::errors::*;

/// An ed25519 signature.
///
/// # Note
///
/// These signatures, unlike the ed25519 signature reference implementation, are
/// "detached"—that is, they do **not** include a copy of the message which has
/// been signed.
#[allow(non_snake_case)]
#[derive(Copy, Eq, PartialEq)]
pub(crate) struct InternalSignature {
    /// `R` is an `EdwardsPoint`, formed by using an hash function with
    /// 512-bits output to produce the digest of:
    ///
    /// - the nonce half of the `ExpandedSecretKey`, and
    /// - the message to be signed.
    ///
    /// This digest is then interpreted as a `Scalar` and reduced into an
    /// element in ℤ/lℤ.  The scalar is then multiplied by the distinguished
    /// basepoint to produce `R`, and `EdwardsPoint`.
    pub(crate) R: CompressedEdwardsY,

    /// `s` is a `Scalar`, formed by using an hash function with 512-bits output
    /// to produce the digest of:
    ///
    /// - the `r` portion of this `Signature`,
    /// - the `PublicKey` which should be used to verify this `Signature`, and
    /// - the message to be signed.
    ///
    /// This digest is then interpreted as a `Scalar` and reduced into an
    /// element in ℤ/lℤ.
    pub(crate) s: Scalar,
}

impl Clone for InternalSignature {
    fn clone(&self) -> Self {
        *self
    }
}

impl Debug for InternalSignature {
    fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
        write!(f, "Signature( R: {:?}, s: {:?} )", &self.R, &self.s)
    }
}

#[cfg(feature = "legacy_compatibility")]
#[inline(always)]
fn check_scalar(bytes: [u8; 32]) -> Result<Scalar, SignatureError> {
    // The highest 3 bits must not be set.  No other checking for the
    // remaining 2^253 - 2^252 + 27742317777372353535851937790883648493
    // potential non-reduced scalars is performed.
    //
    // This is compatible with ed25519-donna and libsodium when
    // -DED25519_COMPAT is NOT specified.
    if bytes[31] & 224 != 0 {
        return Err(SignatureError(InternalError::ScalarFormatError));
    }

    Ok(Scalar::from_bits(bytes))
}

#[cfg(not(feature = "legacy_compatibility"))]
#[inline(always)]
fn check_scalar(bytes: [u8; 32]) -> Result<Scalar, SignatureError> {
    // Since this is only used in signature deserialisation (i.e. upon
    // verification), we can do a "succeed fast" trick by checking that the most
    // significant 4 bits are unset.  If they are unset, we can succeed fast
    // because we are guaranteed that the scalar is fully reduced.  However, if
    // the 4th most significant bit is set, we must do the full reduction check,
    // as the order of the basepoint is roughly a 2^(252.5) bit number.
    //
    // This succeed-fast trick should succeed for roughly half of all scalars.
    if bytes[31] & 240 == 0 {
        return Ok(Scalar::from_bits(bytes))
    }

    match Scalar::from_canonical_bytes(bytes) {
        None => return Err(InternalError::ScalarFormatError.into()),
        Some(x) => return Ok(x),
    };
}

impl InternalSignature {
    /// Convert this `Signature` to a byte array.
    #[inline]
    pub fn to_bytes(&self) -> [u8; SIGNATURE_LENGTH] {
        let mut signature_bytes: [u8; SIGNATURE_LENGTH] = [0u8; SIGNATURE_LENGTH];

        signature_bytes[..32].copy_from_slice(&self.R.as_bytes()[..]);
        signature_bytes[32..].copy_from_slice(&self.s.as_bytes()[..]);
        signature_bytes
    }

    /// Construct a `Signature` from a slice of bytes.
    ///
    /// # Scalar Malleability Checking
    ///
    /// As originally specified in the ed25519 paper (cf. the "Malleability"
    /// section of the README in this repo), no checks whatsoever were performed
    /// for signature malleability.
    ///
    /// Later, a semi-functional, hacky check was added to most libraries to
    /// "ensure" that the scalar portion, `s`, of the signature was reduced `mod
    /// \ell`, the order of the basepoint:
    ///
    /// ```ignore
    /// if signature.s[31] & 224 != 0 {
    ///     return Err();
    /// }
    /// ```
    ///
    /// This bit-twiddling ensures that the most significant three bits of the
    /// scalar are not set:
    ///
    /// ```python,ignore
    /// >>> 0b00010000 & 224
    /// 0
    /// >>> 0b00100000 & 224
    /// 32
    /// >>> 0b01000000 & 224
    /// 64
    /// >>> 0b10000000 & 224
    /// 128
    /// ```
    ///
    /// However, this check is hacky and insufficient to check that the scalar is
    /// fully reduced `mod \ell = 2^252 + 27742317777372353535851937790883648493` as
    /// it leaves us with a guanteed bound of 253 bits.  This means that there are
    /// `2^253 - 2^252 + 2774231777737235353585193779088364849311` remaining scalars
    /// which could cause malleabilllity.
    ///
    /// RFC8032 [states](https://tools.ietf.org/html/rfc8032#section-5.1.7):
    ///
    /// > To verify a signature on a message M using public key A, [...]
    /// > first split the signature into two 32-octet halves.  Decode the first
    /// > half as a point R, and the second half as an integer S, in the range
    /// > 0 <= s < L.  Decode the public key A as point A'.  If any of the
    /// > decodings fail (including S being out of range), the signature is
    /// > invalid.
    ///
    /// However, by the time this was standardised, most libraries in use were
    /// only checking the most significant three bits.  (See also the
    /// documentation for `PublicKey.verify_strict`.)
    #[inline]
    pub fn from_bytes(bytes: &[u8]) -> Result<InternalSignature, SignatureError> {
        if bytes.len() != SIGNATURE_LENGTH {
            return Err(InternalError::BytesLengthError {
                name: "Signature",
                length: SIGNATURE_LENGTH,
            }.into());
        }
        let mut lower: [u8; 32] = [0u8; 32];
        let mut upper: [u8; 32] = [0u8; 32];

        lower.copy_from_slice(&bytes[..32]);
        upper.copy_from_slice(&bytes[32..]);

        let s: Scalar;

        match check_scalar(upper) {
            Ok(x)  => s = x,
            Err(x) => return Err(x),
        }

        Ok(InternalSignature {
            R: CompressedEdwardsY(lower),
            s: s,
        })
    }
}

impl TryFrom<&ed25519::Signature> for InternalSignature {
    type Error = SignatureError;

    fn try_from(sig: &ed25519::Signature) -> Result<InternalSignature, SignatureError> {
        InternalSignature::from_bytes(sig.as_bytes())
    }
}

impl From<InternalSignature> for ed25519::Signature {
    fn from(sig: InternalSignature) -> ed25519::Signature {
        ed25519::Signature::from_bytes(&sig.to_bytes()).unwrap()
    }
}