1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
//! Operator trait implementations. use super::*; use crate::{ order::BitOrder, store::BitStore, }; use core::{ ops::{ Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Deref, DerefMut, Index, IndexMut, Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive, Neg, Not, Shl, ShlAssign, Shr, ShrAssign, Sub, SubAssign, }, }; /** Adds two `BitVec`s together, zero-extending the shorter. `BitVec` addition works just like adding numbers longhand on paper. The first bits in the `BitVec` are the highest, so addition works from right to left, and the shorter `BitVec` is assumed to be extended to the left with zero. The output `BitVec` may be one bit longer than the longer input, if addition overflowed. Numeric arithmetic is provided on `BitVec` as a convenience. Serious numeric computation on variable-length integers should use the `num_bigint` crate instead, which is written specifically for that use case. `BitVec`s are not intended for arithmetic, and `bitvec` makes no guarantees about sustained correctness in arithmetic at this time. **/ impl<O, T> Add for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = Self; /// Adds two `BitVec`s. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let a = bitvec![0, 1, 0, 1]; /// let b = bitvec![0, 0, 1, 1]; /// let s = a + b; /// assert_eq!(bitvec![1, 0, 0, 0], s); /// ``` /// /// This example demonstrates the addition of differently-sized `BitVec`s, /// and will overflow. /// /// ```rust /// use bitvec::prelude::*; /// /// let a = bitvec![1; 4]; /// let b = bitvec![1; 1]; /// let s = b + a; /// assert_eq!(bitvec![1, 0, 0, 0, 0], s); /// ``` fn add(mut self, addend: Self) -> Self::Output { self += addend; self } } /** Adds another `BitVec` into `self`, zero-extending the shorter. `BitVec` addition works just like adding numbers longhand on paper. The first bits in the `BitVec` are the highest, so addition works from right to left, and the shorter `BitVec` is assumed to be extended to the left with zero. The output `BitVec` may be one bit longer than the longer input, if addition overflowed. Numeric arithmetic is provided on `BitVec` as a convenience. Serious numeric computation on variable-length integers should use the `num_bigint` crate instead, which is written specifically for that use case. `BitVec`s are not intended for arithmetic, and `bitvec` makes no guarantees about sustained correctness in arithmetic at this time. **/ impl<O, T> AddAssign for BitVec<O, T> where O: BitOrder, T: BitStore { /// Adds another `BitVec` into `self`. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut a = bitvec![1, 0, 0, 1]; /// let b = bitvec![0, 1, 1, 1]; /// a += b; /// assert_eq!(a, bitvec![1, 0, 0, 0, 0]); /// ``` fn add_assign(&mut self, mut addend: Self) { use core::iter::repeat; // If the other vec is longer, swap them before continuing. if addend.len() > self.len() { mem::swap(self, &mut addend); } // Now that self.len() >= addend.len(), proceed with addition. let mut c = false; let mut stack = BitVec::<O, T>::with_capacity(self.len()); let addend = addend.into_iter().rev().chain(repeat(false)); for (a, b) in self.iter().copied().rev().zip(addend) { let (y, z) = crate::rca1(a, b, c); stack.push(y); c = z; } // If the carry made it to the end, push it. if c { stack.push(true); } // Unwind the stack into `self`. self.clear(); self.extend(stack.into_iter().rev()); } } /** Performs the Boolean `AND` operation between each element of a `BitVec` and anything that can provide a stream of `bool` values (such as another `BitVec`, or any `bool` generator of your choice). The `BitVec` emitted will have the length of the shorter sequence of bits -- if one is longer than the other, the extra bits will be ignored. **/ impl<O, T, I> BitAnd<I> for BitVec<O, T> where O: BitOrder, T: BitStore, I: IntoIterator<Item=bool> { type Output = Self; /// `AND`s a vector and a bitstream, producing a new vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let lhs = bitvec![Msb0, u8; 0, 1, 0, 1]; /// let rhs = bitvec![Msb0, u8; 0, 0, 1, 1]; /// let and = lhs & rhs; /// assert_eq!("[0001]", &format!("{}", and)); /// ``` fn bitand(mut self, rhs: I) -> Self::Output { self &= rhs; self } } /** Performs the Boolean `AND` operation in place on a `BitVec`, using a stream of `bool` values as the other bit for each operation. If the other stream is shorter than `self`, `self` will be truncated when the other stream expires. **/ impl<O, T, I> BitAndAssign<I> for BitVec<O, T> where O: BitOrder, T: BitStore, I: IntoIterator<Item=bool> { /// `AND`s another bitstream into a vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = bitvec![Msb0, u8; 0, 1, 0, 1]; /// src &= bitvec![Msb0, u8; 0, 0, 1, 1]; /// assert_eq!("[0001]", &format!("{}", src)); /// ``` fn bitand_assign(&mut self, rhs: I) { let mut len = 0; for bit in rhs.into_iter().take(self.len()) { let cur = unsafe { *self.get_unchecked(len) }; unsafe { self.set_unchecked(len, cur & bit); } len += 1; } self.truncate(len); } } /** Performs the Boolean `OR` operation between each element of a `BitVec` and anything that can provide a stream of `bool` values (such as another `BitVec`, or any `bool` generator of your choice). The `BitVec` emitted will have the length of the shorter sequence of bits -- if one is longer than the other, the extra bits will be ignored. **/ impl<O, T, I> BitOr<I> for BitVec<O, T> where O: BitOrder, T: BitStore, I: IntoIterator<Item=bool> { type Output = Self; /// `OR`s a vector and a bitstream, producing a new vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let lhs = bitvec![0, 1, 0, 1]; /// let rhs = bitvec![0, 0, 1, 1]; /// let or = lhs | rhs; /// assert_eq!("[0111]", &format!("{}", or)); /// ``` fn bitor(mut self, rhs: I) -> Self::Output { self |= rhs; self } } /** Performs the Boolean `OR` operation in place on a `BitVec`, using a stream of `bool` values as the other bit for each operation. If the other stream is shorter than `self`, `self` will be truncated when the other stream expires. **/ impl<O, T, I> BitOrAssign<I> for BitVec<O, T> where O: BitOrder, T: BitStore, I: IntoIterator<Item=bool> { /// `OR`s another bitstream into a vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = bitvec![0, 1, 0, 1]; /// src |= bitvec![0, 0, 1, 1]; /// assert_eq!("[0111]", &format!("{}", src)); /// ``` fn bitor_assign(&mut self, rhs: I) { let mut len = 0; for bit in rhs.into_iter().take(self.len()) { let cur = unsafe { *self.get_unchecked(len) }; unsafe { self.set_unchecked(len, cur | bit); } len += 1; } self.truncate(len); } } /** Performs the Boolean `XOR` operation between each element of a `BitVec` and anything that can provide a stream of `bool` values (such as another `BitVec`, or any `bool` generator of your choice). The `BitVec` emitted will have the length of the shorter sequence of bits -- if one is longer than the other, the extra bits will be ignored. **/ impl<O, T, I> BitXor<I> for BitVec<O, T> where O: BitOrder, T: BitStore, I: IntoIterator<Item=bool> { type Output = Self; /// `XOR`s a vector and a bitstream, producing a new vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let lhs = bitvec![0, 1, 0, 1]; /// let rhs = bitvec![0, 0, 1, 1]; /// let xor = lhs ^ rhs; /// assert_eq!("[0110]", &format!("{}", xor)); /// ``` fn bitxor(mut self, rhs: I) -> Self::Output { self ^= rhs; self } } /** Performs the Boolean `XOR` operation in place on a `BitVec`, using a stream of `bool` values as the other bit for each operation. If the other stream is shorter than `self`, `self` will be truncated when the other stream expires. **/ impl<O, T, I> BitXorAssign<I> for BitVec<O, T> where O: BitOrder, T: BitStore, I: IntoIterator<Item=bool> { /// `XOR`s another bitstream into a vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = bitvec![0, 1, 0, 1]; /// src ^= bitvec![0, 0, 1, 1]; /// assert_eq!("[0110]", &format!("{}", src)); /// ``` fn bitxor_assign(&mut self, rhs: I) { let mut len = 0; for bit in rhs.into_iter().take(self.len()) { let cur = unsafe { *self.get_unchecked(len) }; unsafe { self.set_unchecked(len, cur ^ bit); } len += 1; } self.truncate(len); } } /** Reborrows the `BitVec` as a `BitSlice`. This mimics the separation between `Vec<T>` and `[T]`. **/ impl<O, T> Deref for BitVec<O, T> where O: BitOrder, T: BitStore { type Target = BitSlice<O, T>; /// Dereferences `&BitVec` down to `&BitSlice`. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv: BitVec = bitvec![1; 4]; /// let bref: &BitSlice = &bv; /// assert!(bref[2]); /// ``` fn deref(&self) -> &Self::Target { self.as_bitslice() } } /** Mutably reborrows the `BitVec` as a `BitSlice`. This mimics the separation between `Vec<T>` and `[T]`. **/ impl<O, T> DerefMut for BitVec<O, T> where O: BitOrder, T: BitStore { /// Dereferences `&mut BitVec` down to `&mut BitSlice`. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut bv: BitVec = bitvec![0; 6]; /// let bref: &mut BitSlice = &mut bv; /// assert!(!bref[5]); /// bref.set(5, true); /// assert!(bref[5]); /// ``` fn deref_mut(&mut self) -> &mut Self::Target { self.as_mut_bitslice() } } /// Readies the underlying storage for Drop. impl<O, T> Drop for BitVec<O, T> where O: BitOrder, T: BitStore { /// Rebuild the interior `Vec` and let it run the deallocator. fn drop(&mut self) { let bp = mem::replace(&mut self.pointer, BitPtr::empty()); // Build a Vec<T> out of the elements, and run its destructor. let (ptr, cap) = (bp.pointer(), self.capacity); drop(unsafe { Vec::from_raw_parts(ptr.w(), 0, cap) }); } } /// Gets the bit at a specific index. The index must be less than the length of /// the `BitVec`. impl<O, T> Index<usize> for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = bool; /// Looks up a single bit by semantic count. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = bitvec![Msb0, u8; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]; /// assert!(!bv[7]); // ---------------------------------^ | | /// assert!( bv[8]); // ------------------------------------^ | /// assert!(!bv[9]); // ---------------------------------------^ /// ``` /// /// If the index is greater than or equal to the length, indexing will /// panic. /// /// The below test will panic when accessing index 1, as only index 0 is /// valid. /// /// ```rust,should_panic /// use bitvec::prelude::*; /// /// let mut bv: BitVec = BitVec::new(); /// bv.push(true); /// bv[1]; /// ``` fn index(&self, cursor: usize) -> &Self::Output { &self.as_bitslice()[cursor] } } impl<O, T> Index<Range<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = BitSlice<O, T>; fn index(&self, range: Range<usize>) -> &Self::Output { &self.as_bitslice()[range] } } impl<O, T> IndexMut<Range<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn index_mut(&mut self, range: Range<usize>) -> &mut Self::Output { &mut self.as_mut_bitslice()[range] } } impl<O, T> Index<RangeFrom<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = BitSlice<O, T>; fn index(&self, range: RangeFrom<usize>) -> &Self::Output { &self.as_bitslice()[range] } } impl<O, T> IndexMut<RangeFrom<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn index_mut(&mut self, range: RangeFrom<usize>) -> &mut Self::Output { &mut self.as_mut_bitslice()[range] } } impl<O, T> Index<RangeFull> for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = BitSlice<O, T>; fn index(&self, _: RangeFull) -> &Self::Output { self.as_bitslice() } } impl<O, T> IndexMut<RangeFull> for BitVec<O, T> where O: BitOrder, T: BitStore { fn index_mut(&mut self, _: RangeFull) -> &mut Self::Output { self.as_mut_bitslice() } } impl<O, T> Index<RangeInclusive<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = BitSlice<O, T>; fn index(&self, range: RangeInclusive<usize>) -> &Self::Output { &self.as_bitslice()[range] } } impl<O, T> IndexMut<RangeInclusive<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn index_mut(&mut self, range: RangeInclusive<usize>) -> &mut Self::Output { &mut self.as_mut_bitslice()[range] } } impl<O, T> Index<RangeTo<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = BitSlice<O, T>; fn index(&self, range: RangeTo<usize>) -> &Self::Output { &self.as_bitslice()[range] } } impl<O, T> IndexMut<RangeTo<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn index_mut(&mut self, range: RangeTo<usize>) -> &mut Self::Output { &mut self.as_mut_bitslice()[range] } } impl<O, T> Index<RangeToInclusive<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = BitSlice<O, T>; fn index(&self, range: RangeToInclusive<usize>) -> &Self::Output { &self.as_bitslice()[range] } } impl<O, T> IndexMut<RangeToInclusive<usize>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn index_mut(&mut self, range: RangeToInclusive<usize>) -> &mut Self::Output { &mut self.as_mut_bitslice()[range] } } /** 2’s-complement negation of a `BitVec`. In 2’s-complement, negation is defined as bit-inversion followed by adding one. Numeric arithmetic is provided on `BitVec` as a convenience. Serious numeric computation on variable-length integers should use the `num_bigint` crate instead, which is written specifically for that use case. `BitVec`s are not intended for arithmetic, and `bitvec` makes no guarantees about sustained correctness in arithmetic at this time. **/ impl<O, T> Neg for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = Self; /// Numerically negates a `BitVec` using 2’s-complement arithmetic. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = bitvec![0, 1, 1]; /// let ne = -bv; /// assert_eq!(ne, bitvec![1, 0, 1]); /// ``` fn neg(mut self) -> Self::Output { // An empty vector does nothing. // Negative zero is zero. Without this check, -[0+] becomes[10+1]. if self.is_empty() || self.not_any() { return self; } self = !self; let mut one = Self::new(); one.push(true); self += one; self } } /// Flips all bits in the vector. impl<O, T> Not for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = Self; /// Inverts all bits in the vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv: BitVec<Msb0, u32> = BitVec::from(&[0u32] as &[u32]); /// let flip = !bv; /// assert_eq!(!0u32, flip.as_slice()[0]); /// ``` fn not(mut self) -> Self::Output { let _ = self.as_mut_bitslice().not(); self } } __bitvec_shift!(u8, u16, u32, u64, i8, i16, i32, i64); /** Shifts all bits in the vector to the left – **DOWN AND TOWARDS THE FRONT**. On fundamentals, the left-shift operator `<<` moves bits away from origin and towards the ceiling. This is because we label the bits in a primitive with the minimum on the right and the maximum on the left, which is big-endian bit order. This increases the value of the primitive being shifted. **THAT IS NOT HOW `BITVEC` WORKS!** `BitVec` defines its layout with the minimum on the left and the maximum on the right! Thus, left-shifting moves bits towards the **minimum**. In `Msb0` order, the effect in memory will be what you expect the `<<` operator to do. **In `Lsb0` order, the effect will be equivalent to using `>>` on the** **fundamentals in memory!** # Notes In order to preserve the effects in memory that this operator traditionally expects, the bits that are emptied by this operation are zeroed rather than left to their old value. The length of the vector is decreased by the shift amount. If the shift amount is greater than the length, the vector calls `clear()` and zeroes its memory. This is *not* an error. **/ impl<O, T> Shl<usize> for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = Self; /// Shifts a `BitVec` to the left, shortening it. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = bitvec![Msb0, u8; 0, 0, 0, 1, 1, 1]; /// assert_eq!("[000111]", &format!("{}", bv)); /// assert_eq!(0b0001_1100, bv.as_slice()[0]); /// assert_eq!(bv.len(), 6); /// let ls = bv << 2usize; /// assert_eq!("[0111]", &format!("{}", ls)); /// assert_eq!(0b0111_0000, ls.as_slice()[0]); /// assert_eq!(ls.len(), 4); /// ``` fn shl(mut self, shamt: usize) -> Self::Output { self <<= shamt; self } } /** Shifts all bits in the vector to the left – **DOWN AND TOWARDS THE FRONT**. On fundamentals, the left-shift operator `<<` moves bits away from origin and towards the ceiling. This is because we label the bits in a primitive with the minimum on the right and the maximum on the left, which is big-endian bit order. This increases the value of the primitive being shifted. **THAT IS NOT HOW `BITVEC` WORKS!** `BitVec` defines its layout with the minimum on the left and the maximum on the right! Thus, left-shifting moves bits towards the **minimum**. In `Msb0` order, the effect in memory will be what you expect the `<<` operator to do. **In `Lsb0` order, the effect will be equivalent to using `>>` on the** **fundamentals in memory!** # Notes In order to preserve the effects in memory that this operator traditionally expects, the bits that are emptied by this operation are zeroed rather than left to their old value. The length of the vector is decreased by the shift amount. If the shift amount is greater than the length, the vector calls `clear()` and zeroes its memory. This is *not* an error. **/ impl<O, T> ShlAssign<usize> for BitVec<O, T> where O: BitOrder, T: BitStore { /// Shifts a `BitVec` to the left in place, shortening it. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut bv = bitvec![Lsb0, u8; 0, 0, 0, 1, 1, 1]; /// assert_eq!("[000111]", &format!("{}", bv)); /// assert_eq!(0b0011_1000, bv.as_slice()[0]); /// assert_eq!(bv.len(), 6); /// bv <<= 2; /// assert_eq!("[0111]", &format!("{}", bv)); /// assert_eq!(0b0000_1110, bv.as_slice()[0]); /// assert_eq!(bv.len(), 4); /// ``` fn shl_assign(&mut self, shamt: usize) { let len = self.len(); if shamt >= len { self.set_all(false); self.clear(); return; } for idx in shamt .. len { let val = self[idx]; self.set(idx.saturating_sub(shamt), val); } let trunc = len.saturating_sub(shamt); for idx in trunc .. len { self.set(idx, false); } self.truncate(trunc); } } /** Shifts all bits in the vector to the right – **UP AND TOWARDS THE BACK**. On fundamentals, the right-shift operator `>>` moves bits towards the origin and away from the ceiling. This is because we label the bits in a primitive with the minimum on the right and the maximum on the left, which is big-endian bit order. This decreases the value of the primitive being shifted. **THAT IS NOT HOW `BITVEC` WORKS!** `BitVec` defines its layout with the minimum on the left and the maximum on the right! Thus, right-shifting moves bits towards the **maximum**. In `Msb0` order, the effect in memory will be what you expect the `>>` operator to do. **In `Lsb0` order, the effect will be equivalent to using `<<` on the** **fundamentals in memory!** # Notes In order to preserve the effects in memory that this operator traditionally expects, the bits that are emptied by this operation are zeroed rather than left to their old value. The length of the vector is increased by the shift amount. If the new length of the vector would overflow, a panic occurs. This *is* an error. **/ impl<O, T> Shr<usize> for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = Self; /// Shifts a `BitVec` to the right, lengthening it and filling the front /// with 0. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = bitvec![Msb0, u8; 0, 0, 0, 1, 1, 1]; /// assert_eq!("[000111]", &format!("{}", bv)); /// assert_eq!(0b0001_1100, bv.as_slice()[0]); /// assert_eq!(bv.len(), 6); /// let rs = bv >> 2usize; /// assert_eq!("[00000111]", &format!("{}", rs)); /// assert_eq!(0b0000_0111, rs.as_slice()[0]); /// assert_eq!(rs.len(), 8); /// ``` fn shr(mut self, shamt: usize) -> Self::Output { self >>= shamt; self } } /** Shifts all bits in the vector to the right – **UP AND TOWARDS THE BACK**. On fundamentals, the right-shift operator `>>` moves bits towards the origin and away from the ceiling. This is because we label the bits in a primitive with the minimum on the right and the maximum on the left, which is big-endian bit order. This decreases the value of the primitive being shifted. **THAT IS NOT HOW `BITVEC` WORKS!** `BitVec` defines its layout with the minimum on the left and the maximum on the right! Thus, right-shifting moves bits towards the **maximum**. In `Msb0` order, the effect in memory will be what you expect the `>>` operator to do. **In `Lsb0` order, the effect will be equivalent to using `<<` on the** **fundamentals in memory!** # Notes In order to preserve the effects in memory that this operator traditionally expects, the bits that are emptied by this operation are zeroed rather than left to their old value. The length of the vector is increased by the shift amount. If the new length of the vector would overflow, a panic occurs. This *is* an error. **/ impl<O, T> ShrAssign<usize> for BitVec<O, T> where O: BitOrder, T: BitStore { /// Shifts a `BitVec` to the right in place, lengthening it and filling the /// front with 0. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut bv = bitvec![Lsb0, u8; 0, 0, 0, 1, 1, 1]; /// assert_eq!("[000111]", &format!("{}", bv)); /// assert_eq!(0b0011_1000, bv.as_slice()[0]); /// assert_eq!(bv.len(), 6); /// bv >>= 2; /// assert_eq!("[00000111]", &format!("{}", bv)); /// assert_eq!(0b1110_0000, bv.as_slice()[0]); /// assert_eq!(bv.len(), 8); /// ``` fn shr_assign(&mut self, shamt: usize) { let old_len = self.len(); for _ in 0 .. shamt { self.push(false); } for idx in (0 .. old_len).rev() { let val = self[idx]; self.set(idx.saturating_add(shamt), val); } for idx in 0 .. shamt { self.set(idx, false); } } } /** Subtracts one `BitVec` from another assuming 2’s-complement encoding. Subtraction is a more complex operation than addition. The bit-level work is largely the same, but semantic distinctions must be made. Unlike addition, which is commutative and tolerant of switching the order of the addends, subtraction cannot swap the minuend (LHS) and subtrahend (RHS). Because of the properties of 2’s-complement arithmetic, M - S is equivalent to M + (!S + 1). Subtraction therefore bitflips the subtrahend and adds one. This may, in a degenerate case, cause the subtrahend to increase in length. Once the subtrahend is stable, the minuend zero-extends its left side in order to match the length of the subtrahend if needed (this is provided by the `>>` operator). When the minuend is stable, the minuend and subtrahend are added together by the `<BitVec as Add>` implementation. The output will be encoded in 2’s-complement, so a leading one means that the output is considered negative. Interpreting the contents of a `BitVec` as an integer is beyond the scope of this crate. Numeric arithmetic is provided on `BitVec` as a convenience. Serious numeric computation on variable-length integers should use the `num_bigint` crate instead, which is written specifically for that use case. `BitVec`s are not intended for arithmetic, and `bitvec` makes no guarantees about sustained correctness in arithmetic at this time. **/ impl<O, T> Sub for BitVec<O, T> where O: BitOrder, T: BitStore { type Output = Self; /// Subtracts one `BitVec` from another. /// /// # Examples /// /// Minuend larger than subtrahend, positive difference. /// /// ```rust /// use bitvec::prelude::*; /// /// let a = bitvec![1, 0]; /// let b = bitvec![ 1]; /// let c = a - b; /// assert_eq!(bitvec![0, 1], c); /// ``` /// /// Minuend smaller than subtrahend, negative difference. /// /// ```rust /// use bitvec::prelude::*; /// /// let a = bitvec![ 1]; /// let b = bitvec![1, 0]; /// let c = a - b; /// assert_eq!(bitvec![1, 1], c); /// ``` /// /// Subtraction from self is correctly handled. /// /// ```rust /// use bitvec::prelude::*; /// /// let a = bitvec![0, 1, 1, 0]; /// let b = a.clone(); /// let c = a - b; /// assert!(c.not_any(), "{:?}", c); /// ``` fn sub(mut self, subtrahend: Self) -> Self::Output { self -= subtrahend; self } } /** Subtracts another `BitVec` from `self`, assuming 2’s-complement encoding. The minuend is zero-extended, or the subtrahend sign-extended, as needed to ensure that the vectors are the same width before subtraction occurs. The `Sub` trait has more documentation on the subtraction process. Numeric arithmetic is provided on `BitVec` as a convenience. Serious numeric computation on variable-length integers should use the `num_bigint` crate instead, which is written specifically for that use case. `BitVec`s are not intended for arithmetic, and `bitvec` makes no guarantees about sustained correctness in arithmetic at this time. **/ impl<O, T> SubAssign for BitVec<O, T> where O: BitOrder, T: BitStore { /// Subtracts another `BitVec` from `self`. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let a = bitvec![0, 0, 0, 1]; /// let b = bitvec![0, 0, 0, 0]; /// let c = a - b; /// assert_eq!(c, bitvec![0, 0, 0, 1]); /// ``` // Note: in `a - b`, `a` is `self` and the minuend, `b` is the subtrahend fn sub_assign(&mut self, mut subtrahend: Self) { // Test for a zero subtrahend. Subtraction of zero is the identity // function, and can exit immediately. if subtrahend.not_any() { return; } // Invert the subtrahend in preparation for addition subtrahend = -subtrahend; let (llen, rlen) = (self.len(), subtrahend.len()); // If the subtrahend is longer than the minuend, 0-extend the minuend. if rlen > llen { let diff = rlen - llen; *self >>= diff; } else { // If the minuend is longer than the subtrahend, sign-extend the // subtrahend. if llen > rlen { let diff = llen - rlen; let sign = subtrahend[0]; subtrahend >>= diff; subtrahend[.. diff].set_all(sign); } } let old = self.len(); *self += subtrahend; // If the subtraction emitted a carry, remove it. if self.len() > old { *self <<= 1; } } }