1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
//! This module relocates a BPF ELF

// Note: Typically ELF shared objects are loaded using the program headers and
// not the section headers.  Since we are leveraging the elfkit crate its much
// easier to use the section headers.  There are cases (reduced size, obfuscation)
// where the section headers may be removed from the ELF.  If that happens then
// this loader will need to be re-written to use the program headers instead.

extern crate goblin;
extern crate scroll;

use crate::{
    ebpf,
    error::{EbpfError, UserDefinedError},
    jit::JitProgram,
    vm::{Config, Executable, InstructionMeter, SyscallRegistry},
};
use byteorder::{ByteOrder, LittleEndian};
use goblin::{
    elf::{header::*, reloc::*, section_header::*, Elf},
    error::Error as GoblinError,
};
use std::{collections::HashMap, fmt::Debug, mem, ops::Range, str};

/// Error definitions
#[derive(Debug, thiserror::Error, PartialEq, Eq)]
pub enum ElfError {
    /// Failed to parse ELF file
    #[error("Failed to parse ELF file: {0}")]
    FailedToParse(String),
    /// Entrypoint out of bounds
    #[error("Entrypoint out of bounds")]
    EntrypointOutOfBounds,
    /// Invaid entrypoint
    #[error("Invaid entrypoint")]
    InvalidEntrypoint,
    /// Failed to get section
    #[error("Failed to get section {0}")]
    FailedToGetSection(String),
    /// Unresolved symbol
    #[error("Unresolved symbol ({0}) at instruction #{1:?} (ELF file offset {2:#x})")]
    UnresolvedSymbol(String, usize, usize),
    /// Section no found
    #[error("Section not found: {0}")]
    SectionNotFound(String),
    /// Relative jump out of bounds
    #[error("Relative jump out of bounds at instruction #{0}")]
    RelativeJumpOutOfBounds(usize),
    /// Relocation hash collision
    #[error("Relocation hash collision while encoding instruction #{0}")]
    RelocationHashCollision(usize),
    /// Incompatible ELF: wrong endianess
    #[error("Incompatible ELF: wrong endianess")]
    WrongEndianess,
    /// Incompatible ELF: wrong ABI
    #[error("Incompatible ELF: wrong ABI")]
    WrongAbi,
    /// Incompatible ELF: wrong mchine
    #[error("Incompatible ELF: wrong machine")]
    WrongMachine,
    /// Incompatible ELF: wrong class
    #[error("Incompatible ELF: wrong class")]
    WrongClass,
    /// Multiple text sections
    #[error("Multiple text sections, consider removing llc option: -function-sections")]
    MultipleTextSections,
    /// .bss section mot supported
    #[error(".bss section not supported")]
    BssNotSupported,
    /// Relocation failed, no loadable section contains virtual address
    #[error("Relocation failed, no loadable section contains virtual address {0:#x}")]
    AddressOutsideLoadableSection(u64),
    /// Relocation failed, invalid referenced virtual address
    #[error("Relocation failed, invalid referenced virtual address {0:#x}")]
    InvalidVirtualAddress(u64),
    /// Relocation failed, unknown type
    #[error("Relocation failed, unknown type {0:?}")]
    UnknownRelocation(u32),
    /// Failed to read relocation info
    #[error("Failed to read relocation info")]
    FailedToReadRelocationInfo,
    /// Incompatible ELF: wrong type
    #[error("Incompatible ELF: wrong type")]
    WrongType,
    /// Unknown symbol
    #[error("Unknown symbol with index {0}")]
    UnknownSymbol(usize),
    /// Offset or value is out of bounds
    #[error("Offset or value is out of bounds")]
    OutOfBounds,
}
impl From<GoblinError> for ElfError {
    fn from(error: GoblinError) -> Self {
        match error {
            GoblinError::Malformed(string) => Self::FailedToParse(format!("malformed: {}", string)),
            GoblinError::BadMagic(magic) => Self::FailedToParse(format!("bad magic: {:#x}", magic)),
            GoblinError::Scroll(error) => Self::FailedToParse(format!("read-write: {}", error)),
            GoblinError::IO(error) => Self::FailedToParse(format!("io: {}", error)),
        }
    }
}
impl<E: UserDefinedError> From<GoblinError> for EbpfError<E> {
    fn from(error: GoblinError) -> Self {
        ElfError::from(error).into()
    }
}

// For more information on the BPF instruction set:
// https://github.com/iovisor/bpf-docs/blob/master/eBPF.md

// msb                                                        lsb
// +------------------------+----------------+----+----+--------+
// |immediate               |offset          |src |dst |opcode  |
// +------------------------+----------------+----+----+--------+

// From least significant to most significant bit:
//   8 bit opcode
//   4 bit destination register (dst)
//   4 bit source register (src)
//   16 bit offset
//   32 bit immediate (imm)

/// Byte offset of the immediate field in the instruction
const BYTE_OFFSET_IMMEDIATE: usize = 4;
/// Byte length of the immediate field
const BYTE_LENGTH_IMMEIDATE: usize = 4;

/// BPF relocation types.
#[allow(non_camel_case_types)]
#[derive(Debug, PartialEq, Copy, Clone)]
enum BpfRelocationType {
    /// No relocation, placeholder
    R_Bpf_None = 0,
    /// 64 bit relocation of a ldxdw instruction.
    /// The ldxdw instruction occupies two instruction slots. The 64-bit address
    /// to load from is split into the 32-bit imm field of each slot. The first
    /// slot's pre-relocation imm field contains the virtual address (typically same
    /// as the file offset) of the location to load. Relocation involves calculating
    /// the post-load 64-bit physical address referenced by the imm field and writing
    /// that physical address back into the imm fields of the ldxdw instruction.
    R_Bpf_64_Relative = 8,
    /// Relocation of a call instruction.
    /// The existing imm field contains either an offset of the instruction to jump to
    /// (think local function call) or a special value of "-1".  If -1 the symbol must
    /// be looked up in the symbol table.  The relocation entry contains the symbol
    /// number to call.  In order to support both local jumps and calling external
    /// symbols a 32-bit hash is computed and stored in the the call instruction's
    /// 32-bit imm field.  The hash is used later to look up the 64-bit address to
    /// jump to.  In the case of a local jump the hash is calculated using the current
    /// program counter and in the case of a symbol the hash is calculated using the
    /// name of the symbol.
    R_Bpf_64_32 = 10,
}
impl BpfRelocationType {
    fn from_x86_relocation_type(from: u32) -> Option<BpfRelocationType> {
        match from {
            R_X86_64_NONE => Some(BpfRelocationType::R_Bpf_None),
            R_X86_64_RELATIVE => Some(BpfRelocationType::R_Bpf_64_Relative),
            R_X86_64_32 => Some(BpfRelocationType::R_Bpf_64_32),
            _ => None,
        }
    }
}

#[derive(Debug, PartialEq)]
struct SectionInfo {
    vaddr: u64,
    offset_range: Range<usize>,
}

/// Elf loader/relocator
#[derive(Debug, PartialEq)]
pub struct EBpfElf<E: UserDefinedError, I: InstructionMeter> {
    /// Configuration settings
    config: Config,
    /// Loaded and executable elf
    elf_bytes: Vec<u8>,
    /// Entrypoint instruction offset
    entrypoint: usize,
    /// Text section info
    text_section_info: SectionInfo,
    /// Read-only section info
    ro_section_infos: Vec<SectionInfo>,
    /// Call resolution map
    calls: HashMap<u32, usize>,
    /// Syscall resolution map
    syscall_registry: SyscallRegistry,
    /// Compiled program and argument
    compiled_program: Option<JitProgram<E, I>>,
}

impl<E: UserDefinedError, I: InstructionMeter> Executable<E, I> for EBpfElf<E, I> {
    /// Get the configuration settings
    fn get_config(&self) -> &Config {
        &self.config
    }

    /// Get the .text section virtual address and bytes
    fn get_text_bytes(&self) -> Result<(u64, &[u8]), EbpfError<E>> {
        Ok((
            self.text_section_info.vaddr,
            &self
                .elf_bytes
                .get(self.text_section_info.offset_range.clone())
                .ok_or(ElfError::OutOfBounds)?,
        ))
    }

    /// Get a vector of virtual addresses for each read-only section
    fn get_ro_sections(&self) -> Result<Vec<(u64, &[u8])>, EbpfError<E>> {
        self.ro_section_infos
            .iter()
            .map(|section_info| {
                Ok((
                    section_info.vaddr,
                    self.elf_bytes
                        .get(section_info.offset_range.clone())
                        .ok_or(ElfError::OutOfBounds)?,
                ))
            })
            .collect::<Result<Vec<_>, EbpfError<E>>>()
    }

    /// Get the entry point offset into the text section
    fn get_entrypoint_instruction_offset(&self) -> Result<usize, EbpfError<E>> {
        Ok(self.entrypoint)
    }

    /// Set a symbol's instruction offset
    fn register_bpf_function(&mut self, hash: u32, pc: usize) {
        self.calls.insert(hash, pc);
    }

    /// Get a symbol's instruction offset
    fn lookup_bpf_function(&self, hash: u32) -> Option<&usize> {
        self.calls.get(&hash)
    }

    /// Get the syscall registry
    fn get_syscall_registry(&self) -> &SyscallRegistry {
        &self.syscall_registry
    }

    /// Set (overwrite) the syscall registry
    fn set_syscall_registry(&mut self, syscall_registry: SyscallRegistry) {
        self.syscall_registry = syscall_registry;
    }

    /// Get the JIT compiled program
    fn get_compiled_program(&self) -> Option<&JitProgram<E, I>> {
        self.compiled_program.as_ref()
    }

    /// JIT compile the executable
    fn jit_compile(&mut self) -> Result<(), EbpfError<E>> {
        self.compiled_program = Some(JitProgram::<E, I>::new(self)?);
        Ok(())
    }

    /// Report information on a symbol that failed to be resolved
    fn report_unresolved_symbol(&self, insn_offset: usize) -> Result<u64, EbpfError<E>> {
        let file_offset = insn_offset
            .saturating_mul(ebpf::INSN_SIZE)
            .saturating_add(self.text_section_info.offset_range.start as usize);

        let mut name = "Unknown";
        if let Ok(elf) = Elf::parse(&self.elf_bytes) {
            for relocation in &elf.dynrels {
                if let Some(BpfRelocationType::R_Bpf_64_32) =
                    BpfRelocationType::from_x86_relocation_type(relocation.r_type)
                {
                    if relocation.r_offset as usize == file_offset {
                        let sym = elf
                            .dynsyms
                            .get(relocation.r_sym)
                            .ok_or(ElfError::UnknownSymbol(relocation.r_sym))?;
                        name = elf
                            .dynstrtab
                            .get(sym.st_name)
                            .ok_or(ElfError::UnknownSymbol(sym.st_name))?
                            .map_err(|_| ElfError::UnknownSymbol(sym.st_name))?;
                    }
                }
            }
        }
        Err(ElfError::UnresolvedSymbol(
            name.to_string(),
            file_offset / ebpf::INSN_SIZE + ebpf::ELF_INSN_DUMP_OFFSET,
            file_offset,
        )
        .into())
    }

    /// Get syscalls and BPF functions (if debug symbols are not stripped)
    fn get_symbols(&self) -> (HashMap<u32, String>, HashMap<usize, (String, usize)>) {
        let mut syscalls = HashMap::new();
        let mut bpf_functions = HashMap::new();
        if let Ok(elf) = Elf::parse(&self.elf_bytes) {
            for symbol in &elf.dynsyms {
                if symbol.st_info != 0x10 {
                    continue;
                }
                let name = elf.dynstrtab.get(symbol.st_name).unwrap().unwrap();
                let hash = ebpf::hash_symbol_name(&name.as_bytes());
                syscalls.insert(hash, name.to_string());
            }
            for symbol in &elf.syms {
                if symbol.st_info & 0xEF != 0x02 {
                    continue;
                }
                let name = elf.strtab.get(symbol.st_name).unwrap().unwrap();
                bpf_functions.insert(
                    symbol.st_value as usize / ebpf::INSN_SIZE - ebpf::ELF_INSN_DUMP_OFFSET,
                    (name.to_string(), symbol.st_size as usize),
                );
            }
        }
        (syscalls, bpf_functions)
    }
}

impl<'a, E: UserDefinedError, I: InstructionMeter> EBpfElf<E, I> {
    /// Create from raw text section bytes (list of instructions)
    pub fn new_from_text_bytes(config: Config, text_bytes: &[u8]) -> Self {
        Self {
            config,
            elf_bytes: text_bytes.to_vec(),
            entrypoint: 0,
            text_section_info: SectionInfo {
                vaddr: ebpf::MM_PROGRAM_START,
                offset_range: Range {
                    start: 0,
                    end: text_bytes.len(),
                },
            },
            ro_section_infos: vec![],
            calls: HashMap::default(),
            syscall_registry: SyscallRegistry::default(),
            compiled_program: None,
        }
    }

    /// Fully loads an ELF, including validation and relocation
    pub fn load(config: Config, bytes: &[u8]) -> Result<Self, ElfError> {
        let elf = Elf::parse(bytes)?;
        let mut elf_bytes = bytes.to_vec();
        Self::validate(&elf, &elf_bytes)?;

        let mut calls = HashMap::default();
        Self::relocate(&elf, &mut elf_bytes, &mut calls)?;

        let text_section = Self::get_section(&elf, ".text")?;

        // calculate entrypoint offset into the text section
        let offset = elf.header.e_entry - text_section.sh_addr;
        if offset % ebpf::INSN_SIZE as u64 != 0 {
            return Err(ElfError::InvalidEntrypoint);
        }
        let entrypoint = offset as usize / ebpf::INSN_SIZE;

        // calculate the text section info
        let text_section_info = SectionInfo {
            vaddr: text_section.sh_addr.saturating_add(ebpf::MM_PROGRAM_START),
            offset_range: text_section.file_range(),
        };

        // calculate the read-only section infos
        let ro_section_infos = elf
            .section_headers
            .iter()
            .filter_map(|section_header| {
                if let Some(Ok(this_name)) = elf.shdr_strtab.get(section_header.sh_name) {
                    if this_name == ".rodata"
                        || this_name == ".data.rel.ro"
                        || this_name == ".eh_frame"
                    {
                        return Some(SectionInfo {
                            vaddr: section_header
                                .sh_addr
                                .saturating_add(ebpf::MM_PROGRAM_START),
                            offset_range: section_header.file_range(),
                        });
                    }
                }
                None
            })
            .collect();

        Ok(Self {
            config,
            elf_bytes,
            entrypoint,
            text_section_info,
            ro_section_infos,
            calls,
            syscall_registry: SyscallRegistry::default(),
            compiled_program: None,
        })
    }

    // Functions exposed for tests

    /// Fix-ups relative calls
    pub fn fixup_relative_calls(
        calls: &mut HashMap<u32, usize>,
        elf_bytes: &mut [u8],
    ) -> Result<(), ElfError> {
        for i in 0..elf_bytes.len() / ebpf::INSN_SIZE {
            let mut insn = ebpf::get_insn(elf_bytes, i);
            if insn.opc == 0x85 && insn.imm != -1 {
                let insn_idx = i as isize + 1 + insn.imm as isize;
                if insn_idx < 0 || insn_idx >= (elf_bytes.len() / ebpf::INSN_SIZE) as isize {
                    return Err(ElfError::RelativeJumpOutOfBounds(
                        i + ebpf::ELF_INSN_DUMP_OFFSET,
                    ));
                }
                // use the instruction index as the key
                let mut key = [0u8; mem::size_of::<i64>()];
                LittleEndian::write_u64(&mut key, i as u64);
                let hash = ebpf::hash_symbol_name(&key);
                if calls.insert(hash, insn_idx as usize).is_some() {
                    return Err(ElfError::RelocationHashCollision(
                        i + ebpf::ELF_INSN_DUMP_OFFSET,
                    ));
                }

                insn.imm = hash as i32;
                let checked_slice = elf_bytes
                    .get_mut(i * ebpf::INSN_SIZE..(i * ebpf::INSN_SIZE) + ebpf::INSN_SIZE)
                    .ok_or(ElfError::OutOfBounds)?;
                checked_slice.copy_from_slice(&insn.to_vec());
            }
        }
        Ok(())
    }

    /// Validates the ELF
    pub fn validate(elf: &Elf, elf_bytes: &[u8]) -> Result<(), ElfError> {
        if elf.header.e_ident[EI_CLASS] != ELFCLASS64 {
            return Err(ElfError::WrongClass);
        }
        if elf.header.e_ident[EI_DATA] != ELFDATA2LSB {
            return Err(ElfError::WrongEndianess);
        }
        if elf.header.e_ident[EI_OSABI] != ELFOSABI_NONE {
            return Err(ElfError::WrongAbi);
        }
        if elf.header.e_machine != EM_BPF {
            return Err(ElfError::WrongMachine);
        }
        if elf.header.e_type != ET_DYN {
            return Err(ElfError::WrongType);
        }

        let num_text_sections = elf.section_headers.iter().fold(0, |count, section_header| {
            if let Some(Ok(this_name)) = elf.shdr_strtab.get(section_header.sh_name) {
                if this_name == ".text" {
                    return count + 1;
                }
            }
            count
        });
        if 1 != num_text_sections {
            return Err(ElfError::MultipleTextSections);
        }

        for section_header in elf.section_headers.iter() {
            if let Some(Ok(this_name)) = elf.shdr_strtab.get(section_header.sh_name) {
                if this_name == ".bss" {
                    return Err(ElfError::BssNotSupported);
                }
            }
        }

        for section_header in &elf.section_headers {
            let start = section_header.sh_offset as usize;
            let end = section_header
                .sh_offset
                .checked_add(section_header.sh_size)
                .ok_or(ElfError::OutOfBounds)? as usize;
            let _ = elf_bytes.get(start..end).ok_or(ElfError::OutOfBounds)?;
        }
        let text_section = Self::get_section(elf, ".text")?;
        if !text_section
            .vm_range()
            .contains(&(elf.header.e_entry as usize))
        {
            return Err(ElfError::EntrypointOutOfBounds);
        }

        Ok(())
    }

    // Private functions

    /// Get a section by name
    fn get_section(elf: &Elf, name: &str) -> Result<SectionHeader, ElfError> {
        match elf.section_headers.iter().find(|section_header| {
            if let Some(Ok(this_name)) = elf.shdr_strtab.get(section_header.sh_name) {
                return this_name == name;
            }
            false
        }) {
            Some(section) => Ok(section.clone()),
            None => Err(ElfError::SectionNotFound(name.to_string())),
        }
    }

    /// Relocates the ELF in-place
    fn relocate(
        elf: &Elf,
        elf_bytes: &mut [u8],
        calls: &mut HashMap<u32, usize>,
    ) -> Result<(), ElfError> {
        let text_section = Self::get_section(elf, ".text")?;

        // Fixup all program counter relative call instructions
        Self::fixup_relative_calls(
            calls,
            &mut elf_bytes
                .get_mut(text_section.file_range())
                .ok_or(ElfError::OutOfBounds)?,
        )?;

        // Fixup all the relocations in the relocation section if exists
        for relocation in &elf.dynrels {
            let r_offset = relocation.r_offset as usize;

            // Offset of the immediate field
            let imm_offset = r_offset.saturating_add(BYTE_OFFSET_IMMEDIATE);
            match BpfRelocationType::from_x86_relocation_type(relocation.r_type) {
                Some(BpfRelocationType::R_Bpf_64_Relative) => {
                    // Raw relocation between sections.  The instruction being relocated contains
                    // the virtual address that it needs turned into a physical address.  Read it,
                    // locate it in the ELF, convert to physical address

                    // Read the instruction's immediate field which contains virtual
                    // address to convert to physical
                    let checked_slice = elf_bytes
                        .get(imm_offset..imm_offset.saturating_add(BYTE_LENGTH_IMMEIDATE))
                        .ok_or(ElfError::OutOfBounds)?;
                    let refd_va = LittleEndian::read_u32(&checked_slice) as u64;

                    if refd_va == 0 {
                        return Err(ElfError::InvalidVirtualAddress(refd_va));
                    }

                    // final "physical address" from the VM's perspetive is rooted at `MM_PROGRAM_START`
                    let refd_pa = ebpf::MM_PROGRAM_START.saturating_add(refd_va);

                    // trace!(
                    //     "Relocation section va {:#x} off {:#x} va {:#x} pa {:#x} va {:#x} pa {:#x}",
                    //     section_infos[target_section].va, target_offset, relocation.addr, section_infos[target_section].bytes.as_ptr() as usize + target_offset, refd_va, refd_pa
                    // );

                    // Write the physical address back into the target location
                    if text_section.file_range().contains(&r_offset) {
                        // Instruction lddw spans two instruction slots, split the
                        // physical address into a high and low and write into both slot's imm field

                        let mut checked_slice = elf_bytes
                            .get_mut(imm_offset..imm_offset.saturating_add(BYTE_LENGTH_IMMEIDATE))
                            .ok_or(ElfError::OutOfBounds)?;
                        LittleEndian::write_u32(&mut checked_slice, (refd_pa & 0xFFFFFFFF) as u32);
                        let mut checked_slice = elf_bytes
                            .get_mut(
                                imm_offset.saturating_add(ebpf::INSN_SIZE)
                                    ..imm_offset
                                        .saturating_add(ebpf::INSN_SIZE + BYTE_LENGTH_IMMEIDATE),
                            )
                            .ok_or(ElfError::OutOfBounds)?;
                        LittleEndian::write_u32(&mut checked_slice, (refd_pa >> 32) as u32);
                    } else {
                        // 64 bit memory location, write entire 64 bit physical address directly
                        let mut checked_slice = elf_bytes
                            .get_mut(r_offset..r_offset.saturating_add(mem::size_of::<u64>()))
                            .ok_or(ElfError::OutOfBounds)?;
                        LittleEndian::write_u64(&mut checked_slice, refd_pa);
                    }
                }
                Some(BpfRelocationType::R_Bpf_64_32) => {
                    // The .text section has an unresolved call to symbol instruction
                    // Hash the symbol name and stick it into the call instruction's imm
                    // field.  Later that hash will be used to look up the function location.

                    let sym = elf
                        .dynsyms
                        .get(relocation.r_sym)
                        .ok_or(ElfError::UnknownSymbol(relocation.r_sym))?;
                    let name = elf
                        .dynstrtab
                        .get(sym.st_name)
                        .ok_or(ElfError::UnknownSymbol(sym.st_name))?
                        .map_err(|_| ElfError::UnknownSymbol(sym.st_name))?;
                    let hash = ebpf::hash_symbol_name(&name.as_bytes());
                    let mut checked_slice = elf_bytes
                        .get_mut(imm_offset..imm_offset.saturating_add(BYTE_LENGTH_IMMEIDATE))
                        .ok_or(ElfError::OutOfBounds)?;
                    LittleEndian::write_u32(&mut checked_slice, hash);
                    let text_section = Self::get_section(elf, ".text")?;
                    if sym.is_function() && sym.st_value != 0 {
                        if !text_section.vm_range().contains(&(sym.st_value as usize)) {
                            return Err(ElfError::OutOfBounds);
                        }
                        calls.insert(
                            hash,
                            (sym.st_value - text_section.sh_addr) as usize / ebpf::INSN_SIZE,
                        );
                    }
                }
                _ => return Err(ElfError::UnknownRelocation(relocation.r_type)),
            }
        }

        Ok(())
    }

    #[allow(dead_code)]
    fn dump_data(name: &str, prog: &[u8]) {
        let mut eight_bytes: Vec<u8> = Vec::new();
        println!("{}", name);
        for i in prog.iter() {
            if eight_bytes.len() >= 7 {
                println!("{:02X?}", eight_bytes);
                eight_bytes.clear();
            } else {
                eight_bytes.push(*i);
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{
        ebpf, elf::scroll::Pwrite, fuzz::fuzz, user_error::UserError, vm::DefaultInstructionMeter,
    };
    use rand::{distributions::Uniform, Rng};
    use std::{collections::HashMap, fs::File, io::Read};
    type ElfExecutable = EBpfElf<UserError, DefaultInstructionMeter>;

    #[test]
    fn test_validate() {
        let mut file = File::open("tests/elfs/noop.so").expect("file open failed");
        let mut bytes = Vec::new();
        file.read_to_end(&mut bytes)
            .expect("failed to read elf file");
        let mut parsed_elf = Elf::parse(&bytes).unwrap();
        let elf_bytes = bytes.to_vec();

        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect("validation failed");
        parsed_elf.header.e_ident[EI_CLASS] = ELFCLASS32;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect_err("allowed bad class");
        parsed_elf.header.e_ident[EI_CLASS] = ELFCLASS64;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect("validation failed");
        parsed_elf.header.e_ident[EI_DATA] = ELFDATA2MSB;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect_err("allowed big endian");
        parsed_elf.header.e_ident[EI_DATA] = ELFDATA2LSB;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect("validation failed");
        parsed_elf.header.e_ident[EI_OSABI] = 1;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect_err("allowed wrong abi");
        parsed_elf.header.e_ident[EI_OSABI] = ELFOSABI_NONE;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect("validation failed");
        parsed_elf.header.e_machine = EM_QDSP6;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect_err("allowed wrong machine");
        parsed_elf.header.e_machine = EM_BPF;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect("validation failed");
        parsed_elf.header.e_type = ET_REL;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect_err("allowed wrong type");
        parsed_elf.header.e_type = ET_DYN;
        ElfExecutable::validate(&parsed_elf, &elf_bytes).expect("validation failed");
    }

    #[test]
    fn test_load() {
        let mut file = File::open("tests/elfs/noop.so").expect("file open failed");
        let mut elf_bytes = Vec::new();
        file.read_to_end(&mut elf_bytes)
            .expect("failed to read elf file");
        ElfExecutable::load(Config::default(), &elf_bytes).expect("validation failed");
    }

    #[test]
    fn test_entrypoint() {
        let mut file = File::open("tests/elfs/noop.so").expect("file open failed");
        let mut elf_bytes = Vec::new();
        file.read_to_end(&mut elf_bytes)
            .expect("failed to read elf file");
        let elf = ElfExecutable::load(Config::default(), &elf_bytes).expect("validation failed");
        let mut parsed_elf = Elf::parse(&elf_bytes).unwrap();
        let initial_e_entry = parsed_elf.header.e_entry;
        let executable: &dyn Executable<UserError, DefaultInstructionMeter> = &elf;
        assert_eq!(
            0,
            executable
                .get_entrypoint_instruction_offset()
                .expect("failed to get entrypoint")
        );

        parsed_elf.header.e_entry += 8;
        let mut elf_bytes = elf_bytes.clone();
        elf_bytes.pwrite(parsed_elf.header, 0).unwrap();
        let elf = ElfExecutable::load(Config::default(), &elf_bytes).expect("validation failed");
        let executable: &dyn Executable<UserError, DefaultInstructionMeter> = &elf;
        assert_eq!(
            1,
            executable
                .get_entrypoint_instruction_offset()
                .expect("failed to get entrypoint")
        );

        parsed_elf.header.e_entry = 1;
        let mut elf_bytes = elf_bytes;
        elf_bytes.pwrite(parsed_elf.header, 0).unwrap();
        assert_eq!(
            Err(ElfError::EntrypointOutOfBounds),
            ElfExecutable::load(Config::default(), &elf_bytes)
        );

        parsed_elf.header.e_entry = std::u64::MAX;
        let mut elf_bytes = elf_bytes;
        elf_bytes.pwrite(parsed_elf.header, 0).unwrap();
        assert_eq!(
            Err(ElfError::EntrypointOutOfBounds),
            ElfExecutable::load(Config::default(), &elf_bytes)
        );

        parsed_elf.header.e_entry = initial_e_entry + ebpf::INSN_SIZE as u64 + 1;
        let mut elf_bytes = elf_bytes;
        elf_bytes.pwrite(parsed_elf.header, 0).unwrap();
        assert_eq!(
            Err(ElfError::InvalidEntrypoint),
            ElfExecutable::load(Config::default(), &elf_bytes)
        );

        parsed_elf.header.e_entry = initial_e_entry;
        let mut elf_bytes = elf_bytes;
        elf_bytes.pwrite(parsed_elf.header, 0).unwrap();
        let elf = ElfExecutable::load(Config::default(), &elf_bytes).expect("validation failed");
        let executable: &dyn Executable<UserError, DefaultInstructionMeter> = &elf;
        assert_eq!(
            0,
            executable
                .get_entrypoint_instruction_offset()
                .expect("failed to get entrypoint")
        );
    }

    #[test]
    fn test_fixup_relative_calls_back() {
        // call -2
        let mut calls: HashMap<u32, usize> = HashMap::new();
        #[rustfmt::skip]
        let mut prog = vec![
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x85, 0x10, 0x00, 0x00, 0xfe, 0xff, 0xff, 0xff];

        ElfExecutable::fixup_relative_calls(&mut calls, &mut prog).unwrap();
        let key = ebpf::hash_symbol_name(&[5, 0, 0, 0, 0, 0, 0, 0]);
        let insn = ebpf::Insn {
            opc: 0x85,
            dst: 0,
            src: 1,
            off: 0,
            imm: key as i32,
        };
        assert_eq!(insn.to_array(), prog[40..]);
        assert_eq!(*calls.get(&key).unwrap(), 4);

        // // call +6
        let mut calls: HashMap<u32, usize> = HashMap::new();
        prog.splice(44.., vec![0xfa, 0xff, 0xff, 0xff]);
        ElfExecutable::fixup_relative_calls(&mut calls, &mut prog).unwrap();
        let key = ebpf::hash_symbol_name(&[5, 0, 0, 0, 0, 0, 0, 0]);
        let insn = ebpf::Insn {
            opc: 0x85,
            dst: 0,
            src: 1,
            off: 0,
            imm: key as i32,
        };
        assert_eq!(insn.to_array(), prog[40..]);
        assert_eq!(*calls.get(&key).unwrap(), 0);
    }

    #[test]
    fn test_fixup_relative_calls_forward() {
        // call +0
        let mut calls: HashMap<u32, usize> = HashMap::new();
        #[rustfmt::skip]
        let mut prog = vec![
            0x85, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];

        ElfExecutable::fixup_relative_calls(&mut calls, &mut prog).unwrap();
        let key = ebpf::hash_symbol_name(&[0, 0, 0, 0, 0, 0, 0, 0]);
        let insn = ebpf::Insn {
            opc: 0x85,
            dst: 0,
            src: 1,
            off: 0,
            imm: key as i32,
        };
        assert_eq!(insn.to_array(), prog[..8]);
        assert_eq!(*calls.get(&key).unwrap(), 1);

        // call +4
        let mut calls: HashMap<u32, usize> = HashMap::new();
        prog.splice(4..8, vec![0x04, 0x00, 0x00, 0x00]);
        ElfExecutable::fixup_relative_calls(&mut calls, &mut prog).unwrap();
        let key = ebpf::hash_symbol_name(&[0, 0, 0, 0, 0, 0, 0, 0]);
        let insn = ebpf::Insn {
            opc: 0x85,
            dst: 0,
            src: 1,
            off: 0,
            imm: key as i32,
        };
        assert_eq!(insn.to_array(), prog[..8]);
        assert_eq!(*calls.get(&key).unwrap(), 5);
    }

    #[test]
    #[should_panic(
        expected = "called `Result::unwrap()` on an `Err` value: RelativeJumpOutOfBounds(29)"
    )]
    fn test_fixup_relative_calls_out_of_bounds_forward() {
        let mut calls: HashMap<u32, usize> = HashMap::new();
        // call +5
        #[rustfmt::skip]
        let mut prog = vec![
            0x85, 0x10, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];

        ElfExecutable::fixup_relative_calls(&mut calls, &mut prog).unwrap();
        let key = ebpf::hash_symbol_name(&[0]);
        let insn = ebpf::Insn {
            opc: 0x85,
            dst: 0,
            src: 1,
            off: 0,
            imm: key as i32,
        };
        assert_eq!(insn.to_array(), prog[..8]);
        assert_eq!(*calls.get(&key).unwrap(), 1);
    }

    #[test]
    #[should_panic(
        expected = "called `Result::unwrap()` on an `Err` value: RelativeJumpOutOfBounds(34)"
    )]
    fn test_fixup_relative_calls_out_of_bounds_back() {
        let mut calls: HashMap<u32, usize> = HashMap::new();
        // call -7
        #[rustfmt::skip]
        let mut prog = vec![
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0xb7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x85, 0x10, 0x00, 0x00, 0xf9, 0xff, 0xff, 0xff];

        ElfExecutable::fixup_relative_calls(&mut calls, &mut prog).unwrap();
        let key = ebpf::hash_symbol_name(&[5]);
        let insn = ebpf::Insn {
            opc: 0x85,
            dst: 0,
            src: 1,
            off: 0,
            imm: key as i32,
        };
        assert_eq!(insn.to_array(), prog[40..]);
        assert_eq!(*calls.get(&key).unwrap(), 4);
    }

    #[test]
    #[ignore]
    fn test_fuzz_load() {
        // Random bytes, will mostly fail due to lack of ELF header so just do a few
        let mut rng = rand::thread_rng();
        let range = Uniform::new(0, 255);
        println!("random bytes");
        for _ in 0..1_000 {
            let elf_bytes: Vec<u8> = (0..100).map(|_| rng.sample(&range)).collect();
            let _ = ElfExecutable::load(Config::default(), &elf_bytes);
        }

        // Take a real elf and mangle it

        let mut file = File::open("tests/elfs/noop.so").expect("file open failed");
        let mut elf_bytes = Vec::new();
        file.read_to_end(&mut elf_bytes)
            .expect("failed to read elf file");
        let parsed_elf = Elf::parse(&elf_bytes).unwrap();

        // focus on elf header, small typically 64 bytes
        println!("mangle elf header");
        fuzz(
            &elf_bytes,
            1_000_000,
            100,
            0..parsed_elf.header.e_ehsize as usize,
            0..255,
            |bytes: &mut [u8]| {
                let _ = ElfExecutable::load(Config::default(), bytes);
            },
        );

        // focus on section headers
        println!("mangle section headers");
        fuzz(
            &elf_bytes,
            1_000_000,
            100,
            parsed_elf.header.e_shoff as usize..elf_bytes.len(),
            0..255,
            |bytes: &mut [u8]| {
                let _ = ElfExecutable::load(Config::default(), bytes);
            },
        );

        // mangle whole elf randomly
        println!("mangle whole elf");
        fuzz(
            &elf_bytes,
            1_000_000,
            100,
            0..elf_bytes.len(),
            0..255,
            |bytes: &mut [u8]| {
                let _ = ElfExecutable::load(Config::default(), bytes);
            },
        );
    }
}