Files
addr2line
adler
ahash
aho_corasick
ansi_term
anyhow
arc_swap
arrayref
arrayvec
ascii
assert_matches
async_stream
async_stream_impl
async_trait
atty
auto_enums
auto_enums_core
auto_enums_derive
backoff
backtrace
base32
base64
bincode
bip39
bitflags
bitvec
blake3
block_buffer
block_padding
borsh
borsh_derive
borsh_derive_internal
borsh_schema_derive_internal
bs58
bstr
bv
byte_slice_cast
byte_unit
bytecount
byteorder
bytes
bzip2
bzip2_sys
cargo_build_bpf
cargo_metadata
cargo_platform
cargo_test_bpf
cast
cc
cfg_if
chrono
chrono_humanize
clap
colored
combine
console
const_fn
constant_time_eq
core_affinity
cpufeatures
crc32fast
criterion_stats
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
crunchy
crypto_mac
csv
csv_core
ctrlc
curve25519_dalek
dashmap
derivative
derive_more
derive_utils
dialoguer
digest
dir_diff
dirs_next
dirs_sys_next
dlopen
dlopen_derive
doc_comment
dtoa
ed25519
ed25519_dalek
either
encoding_rs
enum_iterator
enum_iterator_derive
env_logger
ethabi
ethbloom
ethereum
ethereum_types
evm
evm_bridge
evm_core
evm_gasometer
evm_rpc
evm_runtime
evm_state
evm_utils
failure
failure_derive
fake_simd
fast_math
fd_lock
filetime
fixed_hash
flate2
fnv
foreign_types
foreign_types_shared
form_urlencoded
fs_extra
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
gag
generic_array
gethostname
getrandom
gimli
globset
goauth
goblin
h2
half
hash256_std_hasher
hash32
hash_db
hashbrown
heck
hex
hidapi
histogram
hmac
hmac_drbg
http
http_body
httparse
httpdate
humantime
hyper
hyper_rustls
hyper_tls
idna
ieee754
impl_codec
impl_rlp
impl_serde
indexed
indexmap
indicatif
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
input_buffer
instant
iovec
ipnet
itertools
itoa
jemalloc_ctl
jemalloc_sys
jemallocator
jobserver
jsonrpc_client_transports
jsonrpc_core
jsonrpc_core_client
jsonrpc_derive
jsonrpc_http_server
jsonrpc_pubsub
jsonrpc_server_utils
jsonrpc_ws_server
keccak
keccak_hash
keccak_hasher
kernel32
lazy_static
lazycell
libc
libloading
librocksdb_sys
linked_hash_map
lock_api
log
lru
matches
maybe_uninit
memchr
memmap2
memoffset
mime
mime_guess
miniz_oxide
mio
mio_extras
miow
native_tls
net2
nix
num_cpus
num_derive
num_enum
num_enum_derive
num_integer
num_traits
number_prefix
object
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ouroboros
ouroboros_macro
parity_scale_codec
parity_scale_codec_derive
parity_ws
parking_lot
parking_lot_core
paste
paste_impl
paw
paw_attributes
paw_raw
pbkdf2
percent_encoding
pest
pickledb
pin_project
pin_project_lite
pin_utils
plain
ppv_lite86
pretty_hex
primitive_types
proc_macro2
proc_macro_crate
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
prost
prost_derive
prost_types
quote
radium
rand
rand_chacha
rand_core
rand_isaac
raptorq
rayon
rayon_core
reed_solomon_erasure
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
retain_mut
ring
ripemd160
rlp
rlp_derive
rocksdb
rpassword
rustc_demangle
rustc_hash
rustc_hex
rustls
rustversion
ryu
same_file
scopeguard
scroll
scroll_derive
sct
secp256k1
secp256k1_sys
semver
semver_parser
serde
serde_bytes
serde_cbor
serde_derive
serde_json
serde_urlencoded
serde_yaml
sha1
sha2
sha3
signal_hook
signal_hook_registry
signature
simpl
simple_logger
slab
smallvec
smpl_jwt
snafu
snafu_derive
socket2
solana_account_decoder
solana_accounts_bench
solana_banking_bench
solana_banks_client
solana_banks_interface
solana_banks_server
solana_bench_exchange
solana_bench_streamer
solana_bench_tps
solana_bench_tps_evm
solana_bpf_loader_program
solana_budget_program
solana_clap_utils
solana_cli
solana_cli_config
solana_cli_output
solana_client
solana_config_program
solana_core
solana_crate_features
solana_csv_to_validator_infos
solana_dos
solana_download_utils
solana_evm_loader_program
solana_exchange_program
solana_failure_program
solana_faucet
solana_frozen_abi
solana_frozen_abi_macro
solana_genesis
solana_ip_address
solana_ip_address_server
solana_ledger
solana_ledger_tool
solana_ledger_udev
solana_local_cluster
solana_log_analyzer
solana_logger
solana_measure
solana_merkle_root_bench
solana_merkle_tree
solana_metrics
solana_net_shaper
solana_net_utils
solana_noop_program
solana_notifier
solana_ownable
solana_perf
solana_poh_bench
solana_program
solana_program_test
solana_ramp_tps
solana_rayon_threadlimit
solana_rbpf
solana_remote_wallet
solana_runtime
solana_sdk
solana_sdk_macro
solana_secp256k1_program
solana_sleep_program
solana_stake_accounts
solana_stake_monitor
solana_stake_o_matic
solana_stake_program
solana_storage_bigtable
solana_storage_proto
solana_store_tool
solana_streamer
solana_sys_tuner
solana_tokens
solana_transaction_status
solana_upload_perf
solana_version
solana_vest_program
solana_vote_program
solana_watchtower
spin
spl_associated_token_account
spl_memo
spl_token
stable_deref_trait
standback
static_assertions
strsim
structopt
structopt_derive
subtle
symlink
syn
synstructure
sysctl
tar
tarpc
tarpc_plugins
tempfile
termcolor
terminal_size
textwrap
thiserror
thiserror_impl
thread_scoped
time
time_macros
time_macros_impl
tiny_keccak
tinyvec
tinyvec_macros
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_codec
tokio_executor
tokio_fs
tokio_io
tokio_reactor
tokio_rustls
tokio_serde
tokio_sync
tokio_tcp
tokio_threadpool
tokio_tls
tokio_util
toml
tonic
tower
tower_balance
tower_buffer
tower_discover
tower_layer
tower_limit
tower_load
tower_load_shed
tower_make
tower_ready_cache
tower_retry
tower_service
tower_timeout
tower_util
tracing
tracing_attributes
tracing_core
tracing_futures
trees
triedb
triehash
try_lock
tungstenite
typenum
ucd_trie
uint
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
unix_socket
unreachable
untrusted
url
users
utf8
utf8_width
vec_map
velas
velas_account_program
velas_faucet
velas_genesis
velas_gossip
velas_install
velas_install_init
velas_keygen
velas_test_validator
velas_validator
void
walkdir
want
webpki
webpki_roots
websocket
websocket_base
winapi
ws2_32
xattr
yaml_rust
zeroize
zeroize_derive
zstd
zstd_safe
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#![doc(html_root_url = "https://docs.rs/tokio-threadpool/0.1.18")]
#![deny(missing_docs, missing_debug_implementations)]

//! A work-stealing based thread pool for executing futures.
//!
//! > **Note:** This crate is **deprecated in tokio 0.2.x** and has been moved
//! > and refactored into various places in the [`tokio::runtime`] module of the
//! > [`tokio`] crate. Note that there is no longer a `ThreadPool` type, you are
//! > instead encouraged to make use of the thread pool used by a `Runtime`
//! > configured to use the [threaded scheduler].
//!
//! [`tokio::runtime`]: https://docs.rs/tokio/latest/tokio/runtime/index.html
//! [`tokio`]: https://docs.rs/tokio/latest/tokio/index.html
//! [threaded scheduler]: https://docs.rs/tokio/latest/tokio/runtime/index.html#threaded-scheduler
//!
//! The Tokio thread pool supports scheduling futures and processing them on
//! multiple CPU cores. It is optimized for the primary Tokio use case of many
//! independent tasks with limited computation and with most tasks waiting on
//! I/O. Usually, users will not create a `ThreadPool` instance directly, but
//! will use one via a [`runtime`].
//!
//! The `ThreadPool` structure manages two sets of threads:
//!
//! * Worker threads.
//! * Backup threads.
//!
//! Worker threads are used to schedule futures using a work-stealing strategy.
//! Backup threads, on the other hand, are intended only to support the
//! `blocking` API. Threads will transition between the two sets.
//!
//! The advantage of the work-stealing strategy is minimal cross-thread
//! coordination. The thread pool attempts to make as much progress as possible
//! without communicating across threads.
//!
//! ## Worker overview
//!
//! Each worker has two queues: a deque and a mpsc channel. The deque is the
//! primary queue for tasks that are scheduled to run on the worker thread. Tasks
//! can only be pushed onto the deque by the worker, but other workers may
//! "steal" from that deque. The mpsc channel is used to submit futures while
//! external to the pool.
//!
//! As long as the thread pool has not been shutdown, a worker will run in a
//! loop. Each loop, it consumes all tasks on its mpsc channel and pushes it onto
//! the deque. It then pops tasks off of the deque and executes them.
//!
//! If a worker has no work, i.e., both queues are empty. It attempts to steal.
//! To do this, it randomly scans other workers' deques and tries to pop a task.
//! If it finds no work to steal, the thread goes to sleep.
//!
//! When the worker detects that the pool has been shut down, it exits the loop,
//! cleans up its state, and shuts the thread down.
//!
//! ## Thread pool initialization
//!
//! Note, users normally will use the threadpool created by a [`runtime`].
//!
//! By default, no threads are spawned on creation. Instead, when new futures are
//! spawned, the pool first checks if there are enough active worker threads. If
//! not, a new worker thread is spawned.
//!
//! ## Spawning futures
//!
//! The spawning behavior depends on whether a future was spawned from within a
//! worker or thread or if it was spawned from an external handle.
//!
//! When spawning a future while external to the thread pool, the current
//! strategy is to randomly pick a worker to submit the task to. The task is then
//! pushed onto that worker's mpsc channel.
//!
//! When spawning a future while on a worker thread, the task is pushed onto the
//! back of the current worker's deque.
//!
//! ## Blocking annotation strategy
//!
//! The [`blocking`] function is used to annotate a section of code that
//! performs a blocking operation, either by issuing a blocking syscall or
//! performing any long running CPU-bound computation.
//!
//! The strategy for handling blocking closures is to hand off the worker to a
//! new thread. This implies handing off the `deque` and `mpsc`. Once this is
//! done, the new thread continues to process the work queue and the original
//! thread is able to block. Once it finishes processing the blocking future, the
//! thread has no additional work and is inserted into the backup pool. This
//! makes it available to other workers that encounter a [`blocking`] call.
//!
//! [`blocking`]: fn.blocking.html
//! [`runtime`]: https://docs.rs/tokio/0.1/tokio/runtime/

extern crate tokio_executor;

extern crate crossbeam_deque;
extern crate crossbeam_queue;
extern crate crossbeam_utils;
#[macro_use]
extern crate futures;
#[macro_use]
extern crate lazy_static;
extern crate num_cpus;
extern crate slab;

#[macro_use]
extern crate log;

// ## Crate layout
//
// The primary type, `Pool`, holds the majority of a thread pool's state,
// including the state for each worker. Each worker's state is maintained in an
// instance of `worker::Entry`.
//
// `Worker` contains the logic that runs on each worker thread. It holds an
// `Arc` to `Pool` and is able to access its state from `Pool`.
//
// `Task` is a harness around an individual future. It manages polling and
// scheduling that future.
//
// ## Sleeping workers
//
// Sleeping workers are tracked using a [Treiber stack]. This results in the
// thread that most recently went to sleep getting woken up first. When the pool
// is not under load, this helps threads shutdown faster.
//
// Sleeping is done by using `tokio_executor::Park` implementations. This allows
// the user of the thread pool to customize the work that is performed to sleep.
// This is how injecting timers and other functionality into the thread pool is
// done.
//
// ## Notifying workers
//
// When there is work to be done, workers must be notified. However, notifying a
// worker requires cross thread coordination. Ideally, a worker would only be
// notified when it is sleeping, but there is no way to know if a worker is
// sleeping without cross thread communication.
//
// The two cases when a worker might need to be notified are:
//
// 1. A task is externally submitted to a worker via the mpsc channel.
// 2. A worker has a back log of work and needs other workers to steal from it.
//
// In the first case, the worker will always be notified. However, it could be
// possible to avoid the notification if the mpsc channel has two or greater
// number of tasks *after* the task is submitted. In this case, we are able to
// assume that the worker has previously been notified.
//
// The second case is trickier. Currently, whenever a worker spawns a new future
// (pushing it onto its deque) and when it pops a future from its mpsc, it tries
// to notify a sleeping worker to wake up and start stealing. This is a lot of
// notification and it **might** be possible to reduce it.
//
// Also, whenever a worker is woken up via a signal and it does find work, it,
// in turn, will try to wake up a new worker.
//
// [Treiber stack]: https://en.wikipedia.org/wiki/Treiber_Stack

#[doc(hidden)]
pub mod blocking;
mod builder;
mod callback;
mod config;
mod notifier;
pub mod park;
mod pool;
mod sender;
mod shutdown;
mod task;
mod thread_pool;
mod worker;

pub use blocking::{blocking, BlockingError};
pub use builder::Builder;
pub use sender::Sender;
pub use shutdown::Shutdown;
pub use thread_pool::{SpawnHandle, ThreadPool};
pub use worker::{Worker, WorkerId};