1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/*! `BitSlice` Wide Reference This module defines semantic operations on `[u1]`, in contrast to the mechanical operations defined in `BitPtr`. The `&BitSlice` handle has the same size and general layout as the standard Rust slice handle `&[T]`. Its binary layout is wholly incompatible with the layout of Rust slices, and must never be interchanged except through the provided APIs. !*/ use crate::{ access::BitAccess, domain::*, indices::Indexable, order::{ BitOrder, Local, }, pointer::BitPtr, store::BitStore, }; use core::marker::PhantomData; use either::Either; /** A compact slice of bits, whose order and storage types can be customized. `BitSlice` is a specialized slice type, which can only ever be held by reference or specialized owning pointers provided by this crate. The value patterns of its handles are opaque binary structures, which cannot be meaningfully inspected by user code. `BitSlice` can only be dynamically allocated by this library. Creation of any other `BitSlice` collections will result in severely incorrect behavior. A `BitSlice` reference can be created through the [`bitvec!`] macro, from a [`BitVec`] collection, or from most common Rust types (fundamentals, slices of them, and small arrays) using the [`Bits`] and [`BitsMut`] traits. `BitSlice`s are a view into a block of memory at bit-level resolution. They are represented by a crate-internal pointer structure that ***cannot*** be used with other Rust code except through the provided conversion APIs. ```rust use bitvec::prelude::*; # #[cfg(feature = "alloc")] { let bv = bitvec![0, 1, 0, 1]; // slicing a bitvec let bslice: &BitSlice = &bv[..]; # } // coercing an array to a bitslice let bslice: &BitSlice<_, _> = [1u8, 254u8].bits::<Msb0>(); ``` Bit slices are either mutable or shared. The shared slice type is `&BitSlice<O, T>`, while the mutable slice type is `&mut BitSlice<O, T>`. For example, you can mutate bits in the memory to which a mutable `BitSlice` points: ```rust use bitvec::prelude::*; let mut base = [0u8, 0, 0, 0]; { let bs: &mut BitSlice<_, _> = base.bits_mut::<Msb0>(); bs.set(13, true); eprintln!("{:?}", bs.as_ref()); assert!(bs[13]); } assert_eq!(base[1], 4); ``` # Type Parameters - `O`: An implementor of the `BitOrder` trait. This type is used to convert semantic indices into concrete bit positions in elements, and store or retrieve bit values from the storage type. - `T`: An implementor of the `BitStore` trait: `u8`, `u16`, `u32`, or `u64` (64-bit systems only). This is the actual type in memory that the slice will use to store data. # Safety The `&BitSlice` reference handle has the same *size* as standard Rust slice handles, but it is ***extremely value-incompatible*** with them. Attempting to treat `&BitSlice<_, T>` as `&[T]` in any manner except through the provided APIs is ***catastrophically*** unsafe and unsound. [`BitVec`]: ../vec/struct.BitVec.html [`Bits`]: ../bits/trait.Bits.html [`BitsMut`]: ../bits/trait.BitsMut.html [`From`]: https://doc.rust-lang.org/stable/std/convert/trait.From.html [`bitvec!`]: ../macro.bitvec.html **/ #[repr(transparent)] pub struct BitSlice<O = Local, T = usize> where O: BitOrder, T: BitStore { /// BitOrder type for selecting bits inside an element. _kind: PhantomData<O>, /// Element type of the slice. /// /// eddyb recommends using `PhantomData<T>` and `[()]` instead of `[T]` /// alone. _type: PhantomData<T>, /// Slice of elements `T` over which the `BitSlice` has usage. _elts: [()], } impl<O, T> BitSlice<O, T> where O: BitOrder, T: BitStore { /// Produces the empty slice. This is equivalent to `&[]` for Rust slices. /// /// # Returns /// /// An empty `&BitSlice` handle. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bits: &BitSlice = BitSlice::empty(); /// ``` #[inline] pub fn empty<'a>() -> &'a Self { BitPtr::empty().into_bitslice() } /// Produces the empty mutable slice. This is equivalent to `&mut []` for /// Rust slices. /// /// # Returns /// /// An empty `&mut BitSlice` handle. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bits: &mut BitSlice = BitSlice::empty_mut(); /// ``` #[inline] pub fn empty_mut<'a>() -> &'a mut Self { BitPtr::empty().into_bitslice_mut() } /// Produces an immutable `BitSlice` over a single element. /// /// # Parameters /// /// - `elt`: A reference to an element over which the `BitSlice` will be /// created. /// /// # Returns /// /// A `BitSlice` over the provided element. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let elt: u8 = !0; /// let bs: &BitSlice<Local, _> = BitSlice::from_element(&elt); /// assert!(bs.all()); /// ``` #[inline] pub fn from_element(elt: &T) -> &Self { unsafe { BitPtr::new_unchecked(elt, 0u8.idx(), T::BITS as usize) }.into_bitslice() } /// Produces a mutable `BitSlice` over a single element. /// /// # Parameters /// /// - `elt`: A reference to an element over which the `BitSlice` will be /// created. /// /// # Returns /// /// A `BitSlice` over the provided element. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut elt: u8 = !0; /// let bs: &mut BitSlice<Local, _> = BitSlice::from_element_mut(&mut elt); /// bs.set(0, false); /// assert!(!bs.all()); /// ``` #[inline] pub fn from_element_mut(elt: &mut T) -> &mut Self { unsafe { BitPtr::new_unchecked(elt, 0u8.idx(), T::BITS as usize) }.into_bitslice_mut() } /// Wraps a `&[T: BitStore]` in a `&BitSlice<O: BitOrder, T>`. The order must /// be specified at the call site. The element type cannot be changed. /// /// # Parameters /// /// - `src`: The elements over which the new `BitSlice` will operate. /// /// # Returns /// /// A `BitSlice` representing the original element slice. /// /// # Panics /// /// The source slice must not exceed the maximum number of elements that a /// `BitSlice` can contain. This value is documented in [`BitPtr`]. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let src = [1, 2, 3]; /// let bits = BitSlice::<Msb0, u8>::from_slice(&src[..]); /// assert_eq!(bits.len(), 24); /// assert_eq!(bits.as_ref().len(), 3); /// assert!(bits[7]); // src[0] == 0b0000_0001 /// assert!(bits[14]); // src[1] == 0b0000_0010 /// assert!(bits[22]); // src[2] == 0b0000_0011 /// assert!(bits[23]); /// ``` /// /// [`BitPtr`]: ../pointer/struct.BitPtr.html pub fn from_slice(slice: &[T]) -> &Self { let len = slice.len(); assert!( len <= BitPtr::<T>::MAX_ELTS, "BitSlice cannot address {} elements", len, ); let bits = len.checked_mul(T::BITS as usize) .expect("Bit length out of range"); BitPtr::new(slice.as_ptr(), 0u8.idx(), bits).into_bitslice() } /// Wraps a `&mut [T: BitStore]` in a `&mut BitSlice<O: BitOrder, T>`. The /// order must be specified by the call site. The element type cannot /// be changed. /// /// # Parameters /// /// - `src`: The elements over which the new `BitSlice` will operate. /// /// # Returns /// /// A `BitSlice` representing the original element slice. /// /// # Panics /// /// The source slice must not exceed the maximum number of elements that a /// `BitSlice` can contain. This value is documented in [`BitPtr`]. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = [1, 2, 3]; /// let bits = BitSlice::<Lsb0, u8>::from_slice_mut(&mut src[..]); /// // The first bit is the LSb of the first element. /// assert!(bits[0]); /// bits.set(0, false); /// assert!(!bits[0]); /// assert_eq!(bits.as_ref(), &[0, 2, 3]); /// ``` /// /// [`BitPtr`]: ../pointer/struct.BitPtr.html #[inline] pub fn from_slice_mut(slice: &mut [T]) -> &mut Self { Self::from_slice(slice).bitptr().into_bitslice_mut() } /// Sets the bit value at the given position. /// /// # Parameters /// /// - `&mut self` /// - `index`: The bit index to set. It must be in the domain /// `0 .. self.len()`. /// - `value`: The value to be set, `true` for `1` and `false` for `0`. /// /// # Panics /// /// This method panics if `index` is outside the slice domain. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut store = 8u8; /// let bits = store.bits_mut::<Msb0>(); /// assert!(!bits[3]); /// bits.set(3, true); /// assert!(bits[3]); /// ``` pub fn set(&mut self, index: usize, value: bool) { let len = self.len(); assert!(index < len, "Index out of range: {} >= {}", index, len); unsafe { self.set_unchecked(index, value) }; } /// Sets a bit at an index, without doing bounds checking. /// /// This is generally not recommended; use with caution! For a safe /// alternative, see [`set`]. /// /// # Parameters /// /// - `&mut self` /// - `index`: The bit index to retrieve. This index is *not* checked /// against the length of `self`. /// /// # Effects /// /// The bit at `index` is set to `value`. /// /// # Safety /// /// This method is **not** safe. It performs raw pointer arithmetic to seek /// from the start of the slice to the requested index, and set the bit /// there. It does not inspect the length of `self`, and it is free to /// perform out-of-bounds memory *write* access. /// /// Use this method **only** when you have already performed the bounds /// check, and can guarantee that the call occurs with a safely in-bounds /// index. /// /// # Examples /// /// This example uses a bit slice of length 2, and demonstrates /// out-of-bounds access to the last bit in the element. /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = 0u8; /// { /// let bits = &mut src.bits_mut::<Msb0>()[2 .. 4]; /// assert_eq!(bits.len(), 2); /// unsafe { bits.set_unchecked(5, true); } /// } /// assert_eq!(src, 1); /// ``` /// /// [`set`]: #method.set pub unsafe fn set_unchecked(&mut self, index: usize, value: bool) { let bitptr = self.bitptr(); let (elt, bit) = bitptr.head().offset(index as isize); let data_ptr = bitptr.pointer().a(); (*data_ptr.offset(elt)).set::<O>(bit, value); } /// Produces a write reference to a region of the slice. /// /// This method corresponds to [`Index::index`], except that it produces a /// writable reference rather than a read-only reference. See /// [`BitSliceIndex`] for the possible types of the produced reference. /// /// Use of this method locks the `&mut BitSlice` for the duration of the /// produced reference’s lifetime. If you need multiple **non-overlapping** /// write references into a single source `&mut BitSlice`, see the /// [`::split_at_mut`] method. /// /// # Lifetimes /// /// - `'a`: Propagates the lifetime of the referent slice to the interior /// reference produced. /// /// # Parameters /// /// - `&mut self` /// - `index`: Some value whose type can be used to index `BitSlice`s. /// /// # Returns /// /// A writable reference into `self`, whose exact type is determined by /// `index`’s implementation of [`BitSliceIndex`]. This may be either a /// smaller `&mut BitSlice` when `index` is a range, or a [`BitMut`] proxy /// type when `index` is a `usize`. See the [`BitMut`] documentation for /// information on how to use it. /// /// # Panics /// /// This panics if `index` is out of bounds of `self`. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = 0u8; /// let bits = src.bits_mut::<Msb0>(); /// /// assert!(!bits[0]); /// *bits.at(0) = true; /// // note the leading dereference. /// assert!(bits[0]); /// ``` /// /// This example shows multiple usage by using `split_at_mut`. /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = 0u8; /// let bits = src.bits_mut::<Msb0>(); /// /// { /// let (mut a, rest) = bits.split_at_mut(2); /// let (mut b, rest) = rest.split_at_mut(3); /// *a.at(0) = true; /// *b.at(0) = true; /// *rest.at(0) = true; /// } /// /// assert_eq!(bits.as_slice()[0], 0b1010_0100); /// // a b rest /// ``` /// /// The above example splits the slice into three (the first, the second, /// and the rest) in order to hold multiple write references into the slice. /// /// [`BitSliceIndex`]: trait.BitSliceIndex.html /// [`::get`]: #method.get /// [`::split_at_mut`]: #method.split_at_mut #[deprecated(since = "0.18.0", note = "Use `.get_mut()` instead")] #[inline] pub fn at<'a, I>(&'a mut self, index: I) -> I::Mut where I: BitSliceIndex<'a, O, T> { index.index_mut(self) } /// Version of [`at`](#method.at) that does not perform boundary checking. /// /// # Safety /// /// If `index` is outside the boundaries of `self`, then this function will /// induce safety violations. The caller must ensure that `index` is within /// the boundaries of `self` before calling. #[deprecated(since = "0.18.0", note = "Use `.get_unchecked_mut()` instead")] #[inline] pub unsafe fn at_unchecked<'a, I>(&'a mut self, index: I) -> I::Mut where I: BitSliceIndex<'a, O, T> { index.get_unchecked_mut(self) } /// Version of [`split_at`](#method.split_at) that does not perform boundary /// checking. /// /// # Safety /// /// If `mid` is outside the boundaries of `self`, then this function will /// induce safety violations. The caller must ensure that `mid` is within /// the boundaries of `self` before calling. pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&Self, &Self) { match mid { 0 => (BitSlice::empty(), self), n if n == self.len() => (self, BitSlice::empty()), _ => (self.get_unchecked(.. mid), self.get_unchecked(mid ..)), } } /// Version of [`split_at_mut`](#method.split_at_mut) that does not perform /// boundary checking. /// /// # Safety /// /// If `mid` is outside the boundaries of `self`, then this function will /// induce safety violations. The caller must ensure that `mid` is within /// the boundaries of `self` before calling. #[inline] pub unsafe fn split_at_mut_unchecked( &mut self, mid: usize, ) -> (&mut Self, &mut Self) { let (head, tail) = self.split_at_unchecked(mid); (head.bitptr().into_bitslice_mut(), tail.bitptr().into_bitslice_mut()) } /// Version of [`swap`](#method.swap) that does not perform boundary checks. /// /// # Safety /// /// `a` and `b` must be within the bounds of `self`, otherwise, the memory /// access is unsound and may induce undefined behavior. #[inline] pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize) { let bit_a = *self.get_unchecked(a); let bit_b = *self.get_unchecked(b); self.set_unchecked(a, bit_b); self.set_unchecked(b, bit_a); } /// Tests if *all* bits in the slice domain are set (logical `∧`). /// /// # Truth Table /// /// ```text /// 0 0 => 0 /// 0 1 => 0 /// 1 0 => 0 /// 1 1 => 1 /// ``` /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// Whether all bits in the slice domain are set. The empty slice returns /// `true`. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bits = 0xFDu8.bits::<Msb0>(); /// assert!(bits[.. 4].all()); /// assert!(!bits[4 ..].all()); /// ``` pub fn all(&self) -> bool { match self.bitptr().domain().splat() { Either::Right((h, e, t)) => { let elt = e.load(); (*h .. *t).all(|n| elt.get::<O>(n.idx())) }, Either::Left((h, b, t)) => { if let Some((h, head)) = h { let elt = head.load(); if !(*h .. T::BITS).all(|n| elt.get::<O>(n.idx())) { return false; } } if let Some(body) = b { if !body.iter().all(|e| e.load() == T::TRUE) { return false; } } if let Some((tail, t)) = t { let elt = tail.load(); if !(0 .. *t).all(|n| elt.get::<O>(n.idx())) { return false; } } true }, } } /// Tests if *any* bit in the slice is set (logical `∨`). /// /// # Truth Table /// /// ```text /// 0 0 => 0 /// 0 1 => 1 /// 1 0 => 1 /// 1 1 => 1 /// ``` /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// Whether any bit in the slice domain is set. The empty slice returns /// `false`. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bits = 0x40u8.bits::<Msb0>(); /// assert!(bits[.. 4].any()); /// assert!(!bits[4 ..].any()); /// ``` pub fn any(&self) -> bool { match self.bitptr().domain().splat() { Either::Right((h, e, t)) => { let elt = e.load(); (*h .. *t).any(|n| elt.get::<O>(n.idx())) }, Either::Left((h, b, t)) => { if let Some((h, head)) = h { let elt = head.load(); if (*h .. T::BITS).any(|n| elt.get::<O>(n.idx())) { return true; } } if let Some(body) = b { if body.iter().any(|elt| elt.load() != T::FALSE) { return true; } } if let Some((tail, t)) = t { let elt = tail.load(); if (0 .. *t).any(|n| elt.get::<O>(n.idx())) { return true; } } false }, } } /// Tests if *any* bit in the slice is unset (logical `¬∧`). /// /// # Truth Table /// /// ```text /// 0 0 => 1 /// 0 1 => 1 /// 1 0 => 1 /// 1 1 => 0 /// ``` /// /// # Parameters /// /// - `&self /// /// # Returns /// /// Whether any bit in the slice domain is unset. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bits = 0xFDu8.bits::<Msb0>(); /// assert!(!bits[.. 4].not_all()); /// assert!(bits[4 ..].not_all()); /// ``` #[inline] pub fn not_all(&self) -> bool { !self.all() } /// Tests if *all* bits in the slice are unset (logical `¬∨`). /// /// # Truth Table /// /// ```text /// 0 0 => 1 /// 0 1 => 0 /// 1 0 => 0 /// 1 1 => 0 /// ``` /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// Whether all bits in the slice domain are unset. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bits = 0x40u8.bits::<Msb0>(); /// assert!(!bits[.. 4].not_any()); /// assert!(bits[4 ..].not_any()); /// ``` #[inline] pub fn not_any(&self) -> bool { !self.any() } /// Tests whether the slice has some, but not all, bits set and some, but /// not all, bits unset. /// /// This is `false` if either `all()` or `not_any()` are `true`. /// /// # Truth Table /// /// ```text /// 0 0 => 0 /// 0 1 => 1 /// 1 0 => 1 /// 1 1 => 0 /// ``` /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// Whether the slice domain has mixed content. The empty slice returns /// `false`. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bits = 0b111_000_10u8.bits::<Msb0>(); /// assert!(!bits[0 .. 3].some()); /// assert!(!bits[3 .. 6].some()); /// assert!(bits[6 ..].some()); /// ``` #[inline] pub fn some(&self) -> bool { self.any() && self.not_all() } /// Counts how many bits are set high. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// The number of high bits in the slice domain. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bits = [0xFDu8, 0x25].bits::<Msb0>(); /// assert_eq!(bits.count_ones(), 10); /// ``` pub fn count_ones(&self) -> usize { match self.bitptr().domain().splat() { Either::Right((h, e, t)) => { let elt = e.load(); (*h .. *t).filter(|n| elt.get::<O>(n.idx())).count() }, Either::Left((h, b, t)) => { let mut out = 0usize; if let Some((h, head)) = h { let elt = head.load(); out += (*h .. T::BITS) .filter(|n| elt.get::<O>(n.idx())) .count(); } if let Some(body) = b { out += body.iter() .map(BitAccess::load) .map(T::count_ones) .sum::<usize>(); } if let Some((tail, t)) = t { let elt = tail.load(); out += (0 .. *t) .filter(|n| elt.get::<O>(n.idx())) .count(); } out }, } } /// Counts how many bits are set low. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// The number of low bits in the slice domain. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bits = [0xFDu8, 0x25].bits::<Msb0>(); /// assert_eq!(bits.count_zeros(), 6); /// ``` pub fn count_zeros(&self) -> usize { self.len() - self.count_ones() } /// Set all bits in the slice to a value. /// /// # Parameters /// /// - `&mut self` /// - `value`: The bit value to which all bits in the slice will be set. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = 0u8; /// let bits = src.bits_mut::<Msb0>(); /// bits[2 .. 6].set_all(true); /// assert_eq!(bits.as_ref(), &[0b0011_1100]); /// bits[3 .. 5].set_all(false); /// assert_eq!(bits.as_ref(), &[0b0010_0100]); /// bits[.. 1].set_all(true); /// assert_eq!(bits.as_ref(), &[0b1010_0100]); /// ``` pub fn set_all(&mut self, value: bool) { match self.bitptr().domain().splat() { Either::Right((h, e, t)) => { for n in *h .. *t { e.set::<O>(n.idx(), value); } }, Either::Left((h, b, t)) => { if let Some((h, head)) = h { for n in *h .. T::BITS { head.set::<O>(n.idx(), value); } } if let Some(body) = b { for elt in body { elt.store(if value { T::TRUE } else { T::FALSE }); } } if let Some((tail, t)) = t { for n in 0 .. *t { tail.set::<O>(n.idx(), value); } } }, } } /// Provides mutable traversal of the collection. /// /// It is impossible to implement `IndexMut` on `BitSlice`, because bits do /// not have addresses, so there can be no `&mut u1`. This method allows the /// client to receive an enumerated bit, and provide a new bit to set at /// each index. /// /// # Parameters /// /// - `&mut self` /// - `func`: A function which receives a `(usize, bool)` pair of index and /// value, and returns a bool. It receives the bit at each position, and /// the return value is written back at that position. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = 0u8; /// { /// let bits = src.bits_mut::<Msb0>(); /// bits.for_each(|idx, _bit| idx % 3 == 0); /// } /// assert_eq!(src, 0b1001_0010); /// ``` pub fn for_each<F>(&mut self, func: F) where F: Fn(usize, bool) -> bool { for idx in 0 .. self.len() { unsafe { let tmp = *self.get_unchecked(idx); let new = func(idx, tmp); self.set_unchecked(idx, new); } } } /// Performs “reverse” addition (left to right instead of right to left). /// /// This addition interprets the slice, and the other addend, as having its /// least significant bits first in the order and its most significant bits /// last. This is most likely to be numerically useful under a /// `Lsb0` `BitOrder` type. /// /// # Parameters /// /// - `&mut self`: The addition uses `self` as one addend, and writes the /// sum back into `self`. /// - `addend: impl IntoIterator<Item=bool>`: A stream of bits. When this is /// another `BitSlice`, iteration proceeds from left to right. /// /// # Return /// /// The final carry bit is returned /// /// # Effects /// /// Starting from index `0` and proceeding upwards until either `self` or /// `addend` expires, the carry-propagated addition of `self[i]` and /// `addend[i]` is written to `self[i]`. /// /// ```text /// 101111 /// + 0010__ (the two missing bits are logically zero) /// -------- /// 100000 1 (the carry-out is returned) /// ``` /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut a = 0b0000_1010u8; /// let b = 0b0000_1100u8; /// // s = 1 0110 /// let ab = &mut a.bits_mut::<Lsb0>()[.. 4]; /// let bb = & b.bits::<Lsb0>()[.. 4]; /// let c = ab.add_assign_reverse(bb.iter().copied()); /// assert!(c); /// assert_eq!(a, 0b0000_0110u8); /// ``` /// /// # Performance Notes /// /// When using `Lsb0` `BitOrder` types, this can be accelerated by /// delegating the addition to the underlying types. This is a software /// implementation of the [ripple-carry adder], which has `O(n)` runtime in /// the number of bits. The CPU is much faster, as it has access to /// element-wise or vectorized addition operations. /// /// If your use case sincerely needs binary-integer arithmetic operations on /// bit sets, please file an issue. /// /// [ripple-carry adder]: https://en.wikipedia.org/wiki/Ripple-carry_adder pub fn add_assign_reverse<I>(&mut self, addend: I) -> bool where I: IntoIterator<Item=bool> { // See AddAssign::add_assign for algorithm details let mut c = false; let len = self.len(); let zero = core::iter::repeat(false); for (i, b) in addend.into_iter().chain(zero).enumerate().take(len) { // The iterator is clamped to the upper bound of `self`. c = unsafe { let a = *self.get_unchecked(i); let (y, z) = crate::rca1(a, b, c); // Write the sum into `self` self.set_unchecked(i, y); // Propagate the carry z }; } c } /// Accesses the backing storage of the `BitSlice` as a slice of its /// elements. /// /// This will not include partially-owned edge elements, as they may be /// contended by other slice handles. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// A slice of all the elements that the `BitSlice` uses for storage. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let src = [1u8, 66]; /// let bits = src.bits::<Msb0>(); /// /// let accum = bits.as_slice() /// .iter() /// .map(|elt| elt.count_ones()) /// .sum::<u32>(); /// assert_eq!(accum, 3); /// ``` pub fn as_slice(&self) -> &[T] { &* unsafe { BitAccess::as_slice_mut(match self.bitptr().domain() { | BitDomain::Empty | BitDomain::Minor(_, _, _) => &[], | BitDomain::PartialHead(_, _, body) | BitDomain::PartialTail(body, _, _) | BitDomain::Major(_, _, body, _, _) | BitDomain::Spanning(body) => body, }) } } /// Accesses the underlying store. /// /// This will not include partially-owned edge elements, as they may be /// contended by other slice handles. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = [1u8, 64]; /// let bits = src.bits_mut::<Msb0>(); /// for elt in bits.as_mut_slice() { /// *elt |= 2; /// } /// assert_eq!(&[3, 66], bits.as_slice()); /// ``` pub fn as_mut_slice(&mut self) -> &mut [T] { unsafe { BitAccess::as_slice_mut(match self.bitptr().domain() { | BitDomain::Empty | BitDomain::Minor(_, _, _) => &[], | BitDomain::PartialHead(_, _, body) | BitDomain::PartialTail(body, _, _) | BitDomain::Major(_, _, body, _, _) | BitDomain::Spanning(body) => body, }) } } /// Accesses the underlying store, including contended partial elements. /// /// This produces a slice of element wrappers that permit shared mutation, /// rather than a slice of the bare `T` fundamentals. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// A slice of all elements under the bit span, including any /// partially-owned edge elements, wrapped in safe shared-mutation types. #[inline] pub fn as_total_slice(&self) -> &[T::Access] { self.bitptr().as_access_slice() } /// Accesses the underlying pointer structure. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// The [`BitPtr`] structure of the slice handle. /// /// [`BitPtr`]: ../pointer/struct.BitPtr.html #[inline] pub(crate) fn bitptr(&self) -> BitPtr<T> { BitPtr::from_bitslice(self) } /// Copy a bit from one location in a slice to another. /// /// # Parameters /// /// - `&mut self` /// - `from`: The index of the bit to be copied. /// - `to`: The index at which the copied bit will be written. /// /// # Safety /// /// `from` and `to` must be within the bounds of `self`. This is not /// checked. #[inline] pub(crate) unsafe fn copy_unchecked(&mut self, from: usize, to: usize) { self.set_unchecked(to, *self.get_unchecked(from)); } } /** Allows a type to be used as a sequence of immutable bits. # Requirements This trait can only be implemented by contiguous structures: individual fundamentals, and sequences (arrays or slices) of them. **/ pub trait AsBits { /// The underlying fundamental type of the implementor. type Store: BitStore; /// Constructs a `BitSlice` reference over data. /// /// # Type Parameters /// /// - `O: BitOrder`: The `BitOrder` type used to index within the slice. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// A `BitSlice` handle over `self`’s data, using the provided `BitOrder` /// type and using `Self::Store` as the data type. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let src = 8u8; /// let bits = src.bits::<Msb0>(); /// assert!(bits[4]); /// ``` fn bits<O>(&self) -> &BitSlice<O, Self::Store> where O: BitOrder; /// Constructs a mutable `BitSlice` reference over data. /// /// # Type Parameters /// /// - `O: BitOrder`: The `BitOrder` type used to index within the slice. /// /// # Parameters /// /// - `&mut self` /// /// # Returns /// /// A `BitSlice` handle over `self`’s data, using the provided `BitOrder` /// type and using `Self::Store` as the data type. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut src = 8u8; /// let bits = src.bits_mut::<Lsb0>(); /// assert!(bits[3]); /// *bits.at(3) = false; /// assert!(!bits[3]); /// ``` fn bits_mut<O>(&mut self) -> &mut BitSlice<O, Self::Store> where O: BitOrder; } impl<T> AsBits for T where T: BitStore { type Store = T; fn bits<O>(&self) -> &BitSlice<O, T> where O: BitOrder { BitSlice::from_element(self) } fn bits_mut<O>(&mut self) -> &mut BitSlice<O, T> where O: BitOrder { BitSlice::from_element_mut(self) } } impl<T> AsBits for [T] where T: BitStore { type Store = T; fn bits<O>(&self) -> &BitSlice<O, T> where O: BitOrder { BitSlice::from_slice(self) } fn bits_mut<O>(&mut self) -> &mut BitSlice<O, T> where O: BitOrder { BitSlice::from_slice_mut(self) } } macro_rules! impl_bits_for { ($( $n:expr ),* ) => { $( impl<T> AsBits for [T; $n] where T: BitStore { type Store = T; fn bits<O>(&self) -> &BitSlice<O, T> where O: BitOrder { BitSlice::from_slice(self) } fn bits_mut<O>(&mut self) -> &mut BitSlice<O, T> where O: BitOrder { BitSlice::from_slice_mut(self) } } )* }; } impl_bits_for![ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ]; mod api; pub(crate) mod iter; mod ops; mod proxy; mod traits; // Match the `core::slice` API module topology. pub use self::api::*; pub use self::iter::*; pub use self::proxy::*; #[cfg(test)] mod tests;