1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*! `BitVec` structure This module holds the main working type of the library. Clients can use `BitSlice` directly, but `BitVec` is much more useful for most work. The `BitSlice` module discusses the design decisions for the separation between slice and vector types. !*/ #![cfg(feature = "alloc")] use crate::{ access::BitAccess, boxed::BitBox, indices::Indexable, order::{ BitOrder, Local, }, pointer::BitPtr, slice::BitSlice, store::BitStore, }; use alloc::{ borrow::ToOwned, vec::Vec, }; use core::{ marker::PhantomData, mem, }; /** A compact [`Vec`] of bits, whose order and storage type can be customized. `BitVec` is a newtype wrapper over `Vec`, and as such is exactly three words in size on the stack. # Examples ```rust use bitvec::prelude::*; let mut bv: BitVec = BitVec::new(); bv.push(false); bv.push(true); assert_eq!(bv.len(), 2); assert_eq!(bv[0], false); assert_eq!(bv.pop(), Some(true)); assert_eq!(bv.len(), 1); bv.set(0, true); assert_eq!(bv[0], true); bv.extend([0u8, 1, 0].iter().map(|n| *n != 0u8)); for bit in &*bv { println!("{}", bit); } assert_eq!(bv, bitvec![1, 0, 1, 0]); ``` The [`bitvec!`] macro is provided to make initialization more convenient. ```rust use bitvec::prelude::*; let mut bv = bitvec![0, 1, 2, 3]; bv.push(false); assert_eq!(bv, bitvec![0, 1, 1, 1, 0]); ``` It can also initialize each element of a `BitVec<_, T>` with a given value. This may be more efficient than performing allocation and initialization in separate steps, especially when initializing a vector of zeros: ```rust use bitvec::prelude::*; let bv = bitvec![0; 15]; assert_eq!(bv, bitvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); // The following is equivalent, but potentially slower: let mut bv1: BitVec = BitVec::with_capacity(15); bv1.resize(15, false); ``` Use a `BitVec<T>` as an efficient stack: ```rust use bitvec::prelude::*; let mut stack: BitVec = BitVec::new(); stack.push(false); stack.push(true); stack.push(true); while let Some(top) = stack.pop() { // Prints true, true, false println!("{}", top); } ``` # Indexing The `BitVec` type allows you to access values by index, because it implements the [`Index`] trait. An example will be more explicit: ```rust use bitvec::prelude::*; let bv = bitvec![0, 0, 1, 1]; println!("{}", bv[1]); // it will display 'false' ``` However, be careful: if you try to access an index which isn’t in the `BitVec`, your software will panic! You cannot do this: ```rust,should_panic use bitvec::prelude::*; let bv = bitvec![0, 1, 0, 1]; println!("{}", bv[6]); // it will panic! ``` In conclusion: always check if the index you want to get really exists before doing it. # Slicing A `BitVec` is growable. A [`BitSlice`], on the other hand, is fixed size. To get a bit slice, use `&`. Example: ```rust use bitvec::prelude::*; fn read_bitslice(slice: &BitSlice) { // use slice } let bv = bitvec![0, 1]; read_bitslice(&bv); // … and that’s all! // you can also do it like this: let bs: &BitSlice = &bv; ``` In Rust, it’s more common to pass slices as arguments rather than vectors when you do not want to grow or shrink it. The same goes for [`Vec`] and [`&[]`], and [`String`] and [`&str`]. # Capacity and reallocation The capacity of a bit vector is the amount of space allocated for any future bits that will be added onto the vector. This is not to be confused with the *length* of a vector, which specifies the number of live, useful bits within the vector. If a vector’s length exceeds its capacity, its capacity will automatically be increased, but its storage elements will have to be reallocated. For example, a bit vector with capacity 10 and length 0 would be an allocated, but uninhabited, vector, with space for ten more bits. Pushing ten or fewer bits onto the vector will not change its capacity or cause reallocation to occur. However, if the vector’s length is increased to eleven, it will have to reallocate, which can be slow. For this reason, it is recommended to use [`BitVec::with_capacity`] whenever possible to specify how big the bit vector is expected to get. # Guarantees Due to its incredibly fundamental nature, `BitVec` makes a lot of guarantees about its design. This ensures that it is as low-overhead as possible in the general case, and can be correctly manipulated in fundamental ways by `unsafe` code. Most fundamentally, `BitVec` is and always will be a `([`BitPtr`], capacity)` doublet. No more, no less. The order of these fields is unspecified, and you should **only** interact with the members through the provided APIs. Note that `BitPtr` is ***not directly manipulable***, and must ***never*** be written or interpreted as anything but opaque binary data by user code. When a `BitVec` has allocated memory, then the memory to which it points is on the heap (as defined by the allocator Rust is configured to use by default), and its pointer points to [`len`] initialized bits in order of the [`BitOrder`] type parameter, followed by `capacity - len` logically uninitialized bits. `BitVec` will never perform a “small optimization” where elements are stored in its handle representation, for two reasons: - It would make it more difficult for user code to correctly manipulate a `BitVec`. The contents of the `BitVec` would not have a stable address if the handle were moved, and it would be more difficult to determine if a `BitVec` had allocated memory. - It would penalize the general, heap-allocated, case by incurring a branch on every access. `BitVec` will never automatically shrink itself, even if it is emptied. This ensures that no unnecessary allocations or deallocations occur. Emptying a `BitVec` and then refilling it to the same length will incur no calls to the allocator. If you wish to free up unused memory, use [`shrink_to_fit`]. ## Erasure `BitVec` will not specifically overwrite any data that is removed from it, nor will it specifically preserve it. Its uninitialized memory is scratch space that may be used however the implementation desires, and must not be relied upon as stable. Do not rely on removed data to be erased for security purposes. Even if you drop a `BitVec`, its buffer may simply be reused for other data structures in your program. Even if you zero a `BitVec`’s memory first, that may not actually occur if the optimizer does not consider this an observable side effect. There is one case that will never break, however: using `unsafe` to construct a `[T]` slice over the `BitVec`’s capacity, and writing to the excess space, then increasing the length to match, is always valid. # Type Parameters - `O: BitOrder`: An implementor of the [`BitOrder`] trait. This type is used to convert semantic indices into concrete bit positions in elements, and store or retrieve bit values from the storage type. - `T: BitStore`: An implementor of the [`BitStore`] trait: `u8`, `u16`, `u32`, or `u64` (64-bit systems only). This is the actual type in memory that the vector will use to store data. # Safety The `BitVec` handle has the same *size* as standard Rust `Vec` handles, but it is ***extremely binary incompatible*** with them. Attempting to treat `BitVec<_, T>` as `Vec<T>` in any manner except through the provided APIs is ***catastrophically*** unsafe and unsound. [`BitSlice`]: ../slice/struct.BitSlice.html [`BitVec::with_capacity`]: #method.with_capacity [`BitStore`]: ../store/trait.BitStore.html [`BitOrder`]: ../order/trait.BitOrder.html [`Index`]: https://doc.rust-lang.org/stable/std/ops/trait.Index.html [`String`]: https://doc.rust-lang.org/stable/std/string/struct.String.html [`Vec`]: https://doc.rust-lang.org/stable/std/vec/struct.Vec.html [`bitvec!`]: ../macro.bitvec.html [`clear_on_drop`]: https://docs.rs/clear_on_drop [`len`]: #method.len [`shrink_to_fit`]: #method.shrink_to_fit [`&str`]: https://doc.rust-lang.org/stable/std/primitive.str.html [`&[]`]: https://doc.rust-lang.org/stable/std/primitive.slice.html **/ #[repr(C)] pub struct BitVec<O = Local, T = usize> where O: BitOrder, T: BitStore { /// Phantom `BitOrder` member to satisfy the constraint checker. _order: PhantomData<O>, /// Slice pointer over the owned memory. pointer: BitPtr<T>, /// The number of *elements* this vector has allocated. capacity: usize, } impl<O, T> BitVec<O, T> where O: BitOrder, T: BitStore { /// Constructs a `BitVec` from a value repeated many times. /// /// This function is equivalent to the `bitvec![O, T; bit; len]` macro call, /// and is in fact the implementation of that macro syntax. /// /// # Parameters /// /// - `bit`: The bit value to which all `len` allocated bits will be set. /// - `len`: The number of live bits in the constructed `BitVec`. /// /// # Returns /// /// A `BitVec` with `len` live bits, all set to `bit`. pub fn repeat(bit: bool, len: usize) -> Self { let mut out = Self::with_capacity(len); unsafe { out.set_len(len); } out.set_elements(if bit { T::TRUE } else { T::FALSE }); out } /// Constructs a `BitVec` from a single element. /// /// The produced `BitVec` will span the element, and include all bits in it. /// /// # Parameters /// /// - `elt`: The source element. /// /// # Returns /// /// A `BitVec` over the provided element. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = BitVec::<Msb0, u8>::from_element(5); /// assert_eq!(bv.count_ones(), 2); /// ``` #[inline] pub fn from_element(elt: T) -> Self { let mut v = Vec::with_capacity(1); v.push(elt); Self::from_vec(v) } /// Constructs a `BitVec` from a slice of elements. /// /// The produced `BitVec` will span the provided slice. /// /// # Parameters /// /// - `slice`: The source elements to copy into the new `BitVec`. /// /// # Returns /// /// A `BitVec` set to the provided slice values. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let src = [5, 10]; /// let bv = BitVec::<Msb0, u8>::from_slice(&src[..]); /// assert!(bv[5]); /// assert!(bv[7]); /// assert!(bv[12]); /// assert!(bv[14]); /// ``` #[inline] pub fn from_slice(slice: &[T]) -> Self { Self::from_vec(slice.to_owned()) } /// Consumes a `Vec<T>` and creates a `BitVec<C, T>` from it. /// /// # Parameters /// /// - `vec`: The source vector whose memory will be used. /// /// # Returns /// /// A new `BitVec` using the `vec` `Vec`’s memory. /// /// # Panics /// /// Panics if the source vector would cause the `BitVec` to overflow /// capacity. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = BitVec::<Msb0, u8>::from_vec(vec![1, 2, 4, 8]); /// assert_eq!( /// "[00000001, 00000010, 00000100, 00001000]", /// &format!("{}", bv), /// ); /// ``` pub fn from_vec(vec: Vec<T>) -> Self { let len = vec.len(); assert!( len <= BitPtr::<T>::MAX_ELTS, "Vector length {} overflows {}", len, BitPtr::<T>::MAX_ELTS, ); let bs = BitSlice::<O, T>::from_slice(&vec[..]); let pointer = bs.bitptr(); let capacity = vec.capacity(); mem::forget(vec); Self { _order: PhantomData, pointer, capacity, } } /// Clones a `&BitSlice` into a `BitVec`. /// /// This is the only method by which a `BitVec` can be created whose first /// live bit is not at the `0` position. This behavior, though /// unconventional for common uses of `BitVec`, allows for a more efficient /// clone of any `BitSlice` region without shifting each bit in the region /// down to fit the `0` starting position. /// /// Misaligned `BitVec`s **do not** have any adverse effect on usage other /// than the in-memory representation. /// /// Whenever a `BitVec` is emptied, its head index is always set to `0`, and /// will begin from the aligned position on future refills. /// /// The [`::force_align`] method will shift the `BitVec`’s data to begin at /// the `0` index, if you require this property. /// /// # Parameters /// /// - `slice`: The source `BitSlice` region. This may have any head index, /// and its memory will be copied element-wise into the new buffer. /// /// # Returns /// /// A `BitVec` containing the same bits as the source slice. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bs = [0u8, !0].bits::<Msb0>(); /// let bv = BitVec::from_bitslice(bs); /// assert_eq!(bv.len(), 16); /// assert!(bv.some()); /// ``` /// /// [`::force_align`]: #method.force_align pub fn from_bitslice(slice: &BitSlice<O, T>) -> Self { let mut pointer = slice.bitptr(); let source = pointer.as_access_slice(); // Create a blank buffer into which the source will be copied. let mut v = Vec::with_capacity(source.len()); // Copy the source into the buffer. This must be done per-element, so // that atomic systems will correctly synchronize. source.iter().for_each(|elt| v.push(elt.load())); /* Target the copied pointer to the buffer’s region, preserving its length and offset information. This enables `BitVec` to efficiently lift from any `&BitSlice`, without having to reälign the source per-bit. */ unsafe { pointer.set_pointer(v.as_ptr() as *const T); } let capacity = v.capacity(); mem::forget(v); Self { _order: PhantomData, pointer, capacity, } } /// Converts a frozen `BitBox` allocation into a growable `BitVec`. /// /// This does not copy or reallocate. /// /// # Parameters /// /// - `slice`: A `BitBox` to be thawed. /// /// # Returns /// /// A growable collection over the original memory of the slice. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = BitVec::from_boxed_bitslice(bitbox![0, 1]); /// assert_eq!(bv.len(), 2); /// assert!(bv.some()); /// ``` pub fn from_boxed_bitslice(slice: BitBox<O, T>) -> Self { let bitptr = slice.bitptr(); mem::forget(slice); unsafe { Self::from_raw_parts(bitptr, bitptr.elements()) } } /// Creates a new `BitVec<C, T>` directly from the raw parts of another. /// /// # Parameters /// /// - `pointer`: The `BitPtr<T>` to use. /// - `capacity`: The number of `T` elements *allocated* in that slab. /// /// # Returns /// /// A `BitVec` over the given slab of memory. /// /// # Safety /// /// This is ***highly*** unsafe, due to the number of invariants that aren’t /// checked: /// /// - `pointer` needs to have been previously allocated by some allocating /// type. /// - `pointer`’s `T` needs to have the same size ***and alignment*** as it /// was initially allocated. /// - `pointer`’s element count needs to be less than or equal to the /// original allocation capacity. /// - `capacity` needs to be the original allocation capacity for the /// vector. This is *not* the value produced by `.capacity()`. /// /// Violating these ***will*** cause problems, like corrupting the handle’s /// concept of memory, the allocator’s internal data structures, and the /// sanity of your program. It is ***absolutely*** not safe to construct a /// `BitVec` whose `T` differs from the type used for the initial /// allocation. /// /// The ownership of `pointer` is effectively transferred to the /// `BitVec<C, T>` which may then deallocate, reallocate, or modify the /// contents of the referent slice at will. Ensure that nothing else uses /// the pointer after calling this function. #[inline] pub unsafe fn from_raw_parts(pointer: BitPtr<T>, capacity: usize) -> Self { Self { _order: PhantomData, pointer, capacity, } } /// Produces a `BitSlice` containing the entire vector. /// /// Equivalent to `&s[..]`. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// A `BitSlice` over the vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = bitvec![0, 1, 1, 0]; /// let bs = bv.as_bitslice(); /// ``` #[inline] pub fn as_bitslice(&self) -> &BitSlice<O, T> { self.pointer.into_bitslice() } /// Produces a mutable `BitSlice` containing the entire vector. /// /// Equivalent to `&mut s[..]`. /// /// # Parameters /// /// - `&mut self` /// /// # Returns /// /// A mutable `BitSlice` over the vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut bv = bitvec![0, 1, 1, 0]; /// let bs = bv.as_mut_bitslice(); /// ``` #[inline] pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<O, T> { self.pointer.into_bitslice_mut() } /// Sets the backing storage to the provided element. /// /// This unconditionally sets each live element in the backing buffer to the /// provided value, without altering the `BitVec` length or capacity. It /// operates on the underlying `Vec`’s memory buffer directly, and ignores /// the `BitVec`’s cursors. /// /// It is an implementation detail as to whether this affects the value of /// allocated, but not currently used, elements in the buffer. Behavior of /// this method on elements not visible through `self.as_slice()` is not /// specified. /// /// # Parameters /// /// - `&mut self` /// - `element`: The value to which each live element in the backing store /// will be set. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut bv = bitvec![Local, u8; 0; 10]; /// // note: the second element is not required to be zero, only to have /// // bits `0` and `1` according to `Local` be `0`. /// assert_eq!(bv.as_slice()[0], 0); /// bv.set_elements(0xA5); /// assert_eq!(bv.as_slice(), &[0xA5, 0xA5]); /// ``` #[inline] pub fn set_elements(&mut self, element: T) { self.as_mut_slice().iter_mut().for_each(|elt| *elt = element); } /// Performs “reverse” addition (left to right instead of right to left). /// /// This addition traverses the addends from left to right, performing /// the addition at each index and writing the sum into `self`. /// /// If `addend` expires before `self` does, `addend` is zero-extended and /// the carry propagates through the rest of `self`. If `self` expires /// before `addend`, then `self` is zero-extended and the carry propagates /// through the rest of `addend`, growing `self` until `addend` expires. /// /// An infinite `addend` will cause unbounded memory growth until the vector /// overflows and panics. /// /// # Parameters /// /// - `self` /// - `addend: impl IntoIterator<Item=bool>`: A stream of bits to add into /// `self`, from left to right. /// /// # Returns /// /// The sum vector of `self` and `addend`. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let a = bitvec![0, 1, 0, 1]; /// let b = bitvec![0, 0, 1, 1]; /// let c = a.add_reverse(b); /// assert_eq!(c, bitvec![0, 1, 1, 0, 1]); /// ``` pub fn add_reverse<I>(mut self, addend: I) -> Self where I: IntoIterator<Item=bool> { self.add_assign_reverse(addend); self } /// Performs “reverse” addition (left to right instead of right to left). /// /// This addition traverses the addends from left to right, performing /// the addition at each index and writing the sum into `self`. /// /// If `addend` expires before `self` does, `addend` is zero-extended and /// the carry propagates through the rest of `self`. If `self` expires /// before `addend`, then `self` is zero-extended and the carry propagates /// through the rest of `addend`, growing `self` until `addend` expires. /// /// An infinite `addend` will cause unbounded memory growth until the vector /// overflows and panics. /// /// # Parameters /// /// - `&mut self` /// - `addend: impl IntoIterator<Item=bool>`: A stream of bits to add into /// `self`, from left to right. /// /// # Effects /// /// `self` may grow as a result of the final carry-out bit being `1` and /// pushed onto the right end. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let mut a = bitvec![0, 1, 0, 1]; /// let b = bitvec![0, 0, 1, 1]; /// a.add_assign_reverse(b.iter().copied()); /// assert_eq!(a, bitvec![0, 1, 1, 0, 1]); /// ``` pub fn add_assign_reverse<I>(&mut self, addend: I) where I: IntoIterator<Item=bool> { // Set up iteration over the addend let mut addend = addend.into_iter().fuse(); // Delegate to the `BitSlice` implementation for the initial addition. // If `addend` expires first, it zero-extends; if `self` expires first, // `addend` will still have its remnant for the next stage. let mut c = self.as_mut_bitslice().add_assign_reverse(addend.by_ref()); // If `addend` still has bits to provide, zero-extend `self` and add // them in. for b in addend { let (y, z) = crate::rca1(false, b, c); self.push(y); c = z; } if c { self.push(true); } } /// Changes the order type on the vector handle, without changing its /// contents. /// /// # Parameters /// /// - `self` /// /// # Returns /// /// An equivalent vector handle with a new order type. The contents of the /// backing storage are unchanged. /// /// To reorder the bits in memory, drain this vector into a new handle with /// the desired order type. pub fn change_order<P>(self) -> BitVec<P, T> where P: BitOrder { let (bp, cap) = (self.pointer, self.capacity); mem::forget(self); unsafe { BitVec::from_raw_parts(bp, cap) } } /// Degrades a `BitVec` to a `BitBox`, freezing its size. /// /// # Parameters /// /// - `self` /// /// # Returns /// /// Itself, with its size frozen and ungrowable. pub fn into_boxed_bitslice(self) -> BitBox<O, T> { let (_, head, bits) = self.bitptr().raw_parts(); let boxed = self.into_vec().into_boxed_slice(); let addr = boxed.as_ptr(); mem::forget(boxed); unsafe { BitBox::from_raw( BitPtr::new_unchecked(addr, head, bits).as_mut_ptr(), ) } } /// Degrades a `BitVec` to a standard `Vec`. /// /// # Parameters /// /// - `self` /// /// # Returns /// /// The plain vector underlying the `BitVec`. pub fn into_vec(self) -> Vec<T> { let slice = self.pointer.as_mut_slice(); let out = unsafe { Vec::from_raw_parts(slice.as_mut_ptr(), slice.len(), self.capacity) }; mem::forget(self); out } /// Ensures that the live region of the underlying memory begins at the `0` /// bit position. /// /// # Notes /// /// This method is currently implemented as a linear traversal that moves /// each bit individually from its original index to its final position. /// This is `O(n)` in the bit length of the vector. /// /// It is possible to create an optimized rotation behavior that only moves /// a few bits individually, then moves elements in a gallop. The speed /// difference is proportional to the width of the element type. /// /// When this behavior is implemented, `force_align` will be rewritten to /// take advantage of it. For now, it remains slow. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let src = &bits![Msb0, u8; 1, 0, 1, 1, 0, 1, 1, 0][1 .. 7]; /// assert_eq!(src.len(), 6); /// let mut bv = src.to_owned(); /// assert_eq!(bv.len(), 6); /// assert_eq!(bv.as_slice()[0], 0xB6); /// bv.force_align(); /// assert_eq!(bv.as_slice()[0], 0x6E); /// ``` pub fn force_align(&mut self) { let (_, head, bits) = self.pointer.raw_parts(); let head = *head as usize; if head == 0 { return; } let tail = head + bits; unsafe { self.pointer.set_head(0.idx()); self.pointer.set_len(tail); for (to, from) in (head .. tail).enumerate() { self.copy_unchecked(from, to); } self.pointer.set_len(bits); } } /// Permits a function to modify the `Vec<T>` underneath a `BitVec<_, T>`. /// /// This produces a `Vec<T>` structure referring to the same data region as /// the `BitVec<_, T>`, allows a function to mutably view it, and then /// forgets the `Vec<T>` after the function concludes. /// /// # Parameters /// /// - `&mut self` /// - `func`: A function which receives a mutable borrow to the `Vec<T>` /// underlying the `BitVec<_, T>`. /// /// # Type Parameters /// /// - `F: FnOnce(&mut Vec<T>) -> R`: Any callable object (function or /// closure) which receives a mutable borrow of a `Vec<T>`. /// /// - `R`: The return value from the called function or closure. fn with_vec<F, R>(&mut self, func: F) -> R where F: FnOnce(&mut Vec<T>) -> R { let slice = self.pointer.as_mut_slice(); let mut v = unsafe { Vec::from_raw_parts(slice.as_mut_ptr(), slice.len(), self.capacity) }; let out = func(&mut v); // The only change is that the pointer might relocate. The region data // will remain untouched. Vec guarantees it will never produce an // invalid pointer. unsafe { self.pointer.set_pointer(v.as_ptr()); } // self.pointer = unsafe { BitPtr::new_unchecked(v.as_ptr(), e, h, t) }; self.capacity = v.capacity(); mem::forget(v); out } } mod api; mod iter; mod ops; mod traits; pub use api::*; pub use iter::*;