1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
//! `Forest` composed of disjoint `Tree`s. use super::{Node,Link,Tree,Iter,IterMut,OntoIter,Size}; use super::bfs::{BfsForest,Splitted}; use rust::*; /// A nullable forest pub struct Forest<T> { pub(crate) link : Link, mark : super::heap::Phantom<T>, } impl<T> Deref for Forest<T> { type Target = Link; fn deref( &self ) -> &Link { &self.link } } impl<T> DerefMut for Forest<T> { fn deref_mut( &mut self ) -> &mut Link { &mut self.link } } impl<T> Forest<T> { /// Makes an empty `Forest`. #[inline] pub fn new() -> Forest<T> { Self::from( null_mut(), Size{ degree: 0, node_cnt: 0 })} /// Returns the number of child nodes in `Forest`. /// /// # Examples /// /// ``` /// use trees::linked::fully::tr; /// let forest = tr(0) - tr(1)/tr(2)/tr(3) - tr(4)/tr(5)/tr(6); /// assert_eq!( forest.degree(), 3 ); /// ``` #[inline] pub fn degree( &self ) -> usize { self.link.size.degree as usize } /// Returns the number of all subnodes in `Forest`. /// # Examples /// /// ``` /// use trees::linked::fully::tr; /// let forest = tr(0) - tr(1)/tr(2)/tr(3) - tr(4)/tr(5)/tr(6); /// assert_eq!( forest.node_count(), 7 ); /// ``` #[inline] pub fn node_count( &self ) -> usize { self.link.size.node_cnt as usize } /// Returns `true` if the `Forest` is empty. /// /// This operation should compute in O(1) time. /// /// # Examples /// /// ``` /// use trees::linked::fully::{tr,fr}; /// let mut forest = fr(); /// assert!( forest.is_empty() ); /// forest.push_back( tr(1) ); /// assert!( !forest.is_empty() ); /// ``` #[inline] pub fn is_empty( &self ) -> bool { self.link.is_leaf() } #[inline] pub(crate) fn set_parent( &mut self, parent: *mut Link ) { for child in self.iter_mut() { child.set_parent( parent ); } } #[inline] pub(crate) fn from( child: *mut Link, size: Size ) -> Self { let mut forest = Forest { link : Link { next : null_mut(), child , prev : null_mut(), parent : null_mut(), size , }, mark : PhantomData }; let link = &mut forest.link as *mut Link; forest.set_parent( link ); forest } #[inline] pub(crate) fn clear( &mut self ) { self.link.reset_child(); } #[inline] pub(crate) unsafe fn set_sib( &mut self, prev: *mut Link, next: *mut Link ) { (*self.head()).prev = prev; (*self.tail()).next = next; } /// Returns the first child of the forest, /// or None if it is empty. pub fn first( &self ) -> Option<&Node<T>> { if self.is_empty() { None } else { unsafe { Some( &*( self.head() as *const Node<T> ))} } } /// Returns a mutable pointer to the first child of the forest, /// or None if it is empty. pub fn first_mut( &mut self ) -> Option<&mut Node<T>> { if self.is_empty() { None } else { unsafe { Some( &mut *( self.head() as *mut Node<T> ))} } } /// Returns the last child of the forest, /// or None if it is empty. pub fn last( &self ) -> Option<&Node<T>> { if self.is_empty() { None } else { unsafe { Some( &*( self.tail() as *const Node<T> ))} } } /// Returns a mutable pointer to the last child of the forest, /// or None if it is empty. pub fn last_mut( &mut self ) -> Option<&mut Node<T>> { if self.is_empty() { None } else { unsafe { Some( &mut *( self.tail() as *mut Node<T> ))} } } /// Adds the tree as the first child. /// /// # Examples /// /// ``` /// use trees::linked::fully::{tr,fr}; /// let mut forest = fr(); /// forest.push_front( tr(1) ); /// assert_eq!( forest.to_string(), "( 1 )" ); /// forest.push_front( tr(2) ); /// assert_eq!( forest.to_string(), "( 2 1 )" ); /// ``` #[inline] pub fn push_front( &mut self, mut tree: Tree<T> ) { let tree_root = tree.root_mut().plink(); if self.is_empty() { self.set_child( tree_root ); } else { unsafe { tree.set_sib( self.tail(), self.head() ); self.adopt( tree_root, tree_root ); }} self.size.degree += 1; self.size.node_cnt += tree.root().size.node_cnt; tree.clear(); } /// Adds the tree as the first child. /// /// # Examples /// /// ``` /// use trees::linked::fully::{tr,fr}; /// let mut forest = fr(); /// forest.push_back( tr(1) ); /// assert_eq!( forest.to_string(), "( 1 )" ); /// forest.push_back( tr(2) ); /// assert_eq!( forest.to_string(), "( 1 2 )" ); /// ``` #[inline] pub fn push_back( &mut self, mut tree: Tree<T> ) { let tree_root = tree.root_mut().plink(); if !self.is_empty() { unsafe { tree.set_sib( self.tail(), self.head() ); self.adopt( tree_root, tree_root ); } } self.set_child( tree_root ); self.size.degree += 1; self.size.node_cnt += tree.root().size.node_cnt; tree.clear(); } /// remove and return the first child /// /// # Examples /// /// ``` /// use trees::linked::fully::tr; /// let mut forest = -tr(1)-tr(2); /// assert_eq!( forest.pop_front(), Some( tr(1) )); /// assert_eq!( forest.to_string(), "( 2 )" ); /// assert_eq!( forest.pop_front(), Some( tr(2) )); /// assert_eq!( forest.to_string(), "()" ); /// ``` #[inline] pub fn pop_front( &mut self ) -> Option<Tree<T>> { if self.is_empty() { None } else { unsafe { let front = self.head(); if self.has_only_one_child() { self.clear(); } else { (*self.new_head()).prev = self.tail(); (*self.tail()).next = self.new_head(); } (*front).reset_parent(); (*front).reset_sib(); self.size.degree -= 1; self.size.node_cnt -= (*front).size.node_cnt; Some( Tree::from( front )) }} } /// remove and return the first child /// /// # Examples /// /// ``` /// use trees::linked::fully::tr; /// let mut forest = -tr(1)-tr(2); /// assert_eq!( forest.pop_back(), Some( tr(2) )); /// assert_eq!( forest.to_string(), "( 1 )" ); /// assert_eq!( forest.pop_back(), Some( tr(1) )); /// assert_eq!( forest.to_string(), "()" ); /// ``` #[inline] pub fn pop_back( &mut self ) -> Option<Tree<T>> { if self.is_empty() { None } else { unsafe { let back = self.tail(); if self.has_only_one_child() { self.clear(); } else { let new_tail = self.new_tail(); (*new_tail).next = self.head(); (*self.head()).prev = new_tail; self.set_child( new_tail ); } (*back).reset_parent(); (*back).reset_sib(); self.size.degree -= 1; self.size.node_cnt -= (*back).size.node_cnt; Some( Tree::from( back )) }} } /// merge the forest at front /// /// # Examples /// /// ``` /// use trees::linked::fully::{tr,fr}; /// let mut forest = fr(); /// forest.prepend( -tr(0)-tr(1) ); /// assert_eq!( forest.to_string(), "( 0 1 )" ); /// forest.prepend( -tr(2)-tr(3) ); /// assert_eq!( forest.to_string(), "( 2 3 0 1 )" ); /// ``` #[inline] pub fn prepend( &mut self, mut forest: Forest<T> ) { if !forest.is_empty() { if self.is_empty() { self.set_child( forest.tail() ); } else { unsafe { let forest_head = forest.head(); forest.set_sib( self.tail(), self.head() ); self.adopt( forest.tail(), forest_head ); }} self.size += forest.size; forest.clear(); } } /// merge the forest at back /// /// # Examples /// /// ``` /// use trees::linked::fully::{tr,fr}; /// let mut forest = fr(); /// forest.append( -tr(0)-tr(1) ); /// assert_eq!( forest.to_string(), "( 0 1 )" ); /// forest.append( -tr(2)-tr(3) ); /// assert_eq!( forest.to_string(), "( 0 1 2 3 )" ); /// ``` #[inline] pub fn append( &mut self, mut forest: Forest<T> ) { if !forest.is_empty() { if !self.is_empty() { unsafe { let forest_head = forest.head(); forest.set_sib( self.tail(), self.head() ); self.adopt( forest.tail(), forest_head ); }} self.set_child( forest.tail() ); self.size += forest.size; forest.clear(); } } /// Provides a forward iterator over child `Node`s /// /// # Examples /// /// ``` /// use trees::linked::fully::{tr,fr}; /// /// let forest = fr::<i32>(); /// assert_eq!( forest.iter().next(), None ); /// /// let forest = -tr(1)-tr(2); /// let mut iter = forest.iter(); /// assert_eq!( iter.next(), Some( tr(1).root() )); /// assert_eq!( iter.next(), Some( tr(2).root() )); /// assert_eq!( iter.next(), None ); /// assert_eq!( iter.next(), None ); /// ``` #[inline] pub fn iter<'a>( &self ) -> Iter<'a,T> { if self.is_empty() { Iter::new( null(), null(), 0 ) } else { unsafe { Iter::new( self.head(), self.tail(), self.size.degree as usize ) }} } #[deprecated( since="0.2.0", note="please use `iter` instead" )] #[inline] pub fn children<'a>( &self ) -> Iter<'a,T> { if self.is_empty() { Iter::new( null(), null(), 0 ) } else { unsafe { Iter::new( self.head(), self.tail(), self.size.degree as usize ) }} } /// Provides a forward iterator over child `Node`s with mutable references. /// /// # Examples /// /// ``` /// use trees::linked::fully::{tr,fr}; /// /// let mut forest = fr::<i32>(); /// assert_eq!( forest.iter_mut().next(), None ); /// /// let mut forest = -tr(1)-tr(2); /// for child in forest.iter_mut() { child.data *= 10; } /// assert_eq!( forest.to_string(), "( 10 20 )" ); /// ``` #[inline] pub fn iter_mut<'a>( &mut self ) -> IterMut<'a,T> { if self.is_empty() { IterMut::new( null_mut(), null_mut(), 0 ) } else { unsafe { IterMut::new( self.head(), self.tail(), self.size.degree as usize ) }} } #[deprecated( since="0.2.0", note="please use `iter_mut` instead" )] #[inline] pub fn children_mut<'a>( &mut self ) -> IterMut<'a,T> { if self.is_empty() { IterMut::new( null_mut(), null_mut(), 0 ) } else { unsafe { IterMut::new( self.head(), self.tail(), self.size.degree as usize ) }} } /// Provide an iterator over `Forest`'s `Subnode`s for insert/remove at any position. /// See `Subnode`'s document for more. #[inline] pub fn onto_iter<'a>( &mut self ) -> OntoIter<'a,T> { unsafe { if self.is_empty() { OntoIter { next : null_mut(), curr: null_mut(), prev: null_mut(), child: null_mut(), parent : &mut self.link, mark : PhantomData, } } else { OntoIter { next : self.head(), curr : null_mut(), prev : self.child, child : self.child, parent : &mut self.link, mark : PhantomData, } } } } /// Provides a forward iterator in a breadth-first manner /// /// # Examples /// /// ``` /// use trees::{bfs,Size}; /// use trees::linked::fully::{tr,fr}; /// /// let forest = fr::<i32>(); /// let visits = forest.bfs().iter.collect::<Vec<_>>(); /// assert!( visits.is_empty() ); /// /// let forest = -( tr(1)/tr(2)/tr(3) ) -( tr(4)/tr(5)/tr(6) ); /// let visits = forest.bfs().iter.collect::<Vec<_>>(); /// assert_eq!( visits, vec![ /// bfs::Visit{ data: &1, size: Size{ degree: 2, node_cnt: 3 }}, /// bfs::Visit{ data: &4, size: Size{ degree: 2, node_cnt: 3 }}, /// bfs::Visit{ data: &2, size: Size{ degree: 0, node_cnt: 1 }}, /// bfs::Visit{ data: &3, size: Size{ degree: 0, node_cnt: 1 }}, /// bfs::Visit{ data: &5, size: Size{ degree: 0, node_cnt: 1 }}, /// bfs::Visit{ data: &6, size: Size{ degree: 0, node_cnt: 1 }}, /// ]); /// ``` pub fn bfs<'a, 's:'a>( &'s self ) -> BfsForest<Splitted<Iter<'a,T>>> { let size = self.link.size; let mut iters = VecDeque::new(); iters.push_back( self.iter() ); let iter = Splitted{ iters }; BfsForest{ iter, size } } /// Provides a forward iterator with mutable references in a breadth-first manner /// /// # Examples /// /// ``` /// use trees::{bfs,Size}; /// use trees::linked::fully::{tr,fr}; /// /// let mut forest = fr::<i32>(); /// let visits = forest.bfs_mut().iter.collect::<Vec<_>>(); /// assert!( visits.is_empty() ); /// /// let mut forest = -( tr(1)/tr(2)/tr(3) ) -( tr(4)/tr(5)/tr(6) ); /// let visits = forest.bfs_mut().iter.collect::<Vec<_>>(); /// assert_eq!( visits, vec![ /// bfs::Visit{ data: &mut 1, size: Size{ degree: 2, node_cnt: 3 }}, /// bfs::Visit{ data: &mut 4, size: Size{ degree: 2, node_cnt: 3 }}, /// bfs::Visit{ data: &mut 2, size: Size{ degree: 0, node_cnt: 1 }}, /// bfs::Visit{ data: &mut 3, size: Size{ degree: 0, node_cnt: 1 }}, /// bfs::Visit{ data: &mut 5, size: Size{ degree: 0, node_cnt: 1 }}, /// bfs::Visit{ data: &mut 6, size: Size{ degree: 0, node_cnt: 1 }}, /// ]); /// ``` pub fn bfs_mut<'a, 's:'a>( &'s mut self ) -> BfsForest<Splitted<IterMut<'a,T>>> { let size = self.link.size; let mut iters = VecDeque::new(); iters.push_back( self.iter_mut() ); let iter = Splitted{ iters }; BfsForest{ iter, size } } /// Provides a forward iterator with owned data in a breadth-first manner /// /// # Examples /// /// ``` /// use trees::{bfs,Size}; /// use trees::linked::fully::{tr,fr}; /// /// let forest = fr::<i32>(); /// let visits = forest.into_bfs().iter.collect::<Vec<_>>(); /// assert!( visits.is_empty() ); /// /// let forest = -( tr(1)/tr(2)/tr(3) ) -( tr(4)/tr(5)/tr(6) ); /// let visits = forest.into_bfs().iter.collect::<Vec<_>>(); /// assert_eq!( visits, vec![ /// bfs::Visit{ data: 1, size: Size{ degree: 2, node_cnt: 3 }}, /// bfs::Visit{ data: 4, size: Size{ degree: 2, node_cnt: 3 }}, /// bfs::Visit{ data: 2, size: Size{ degree: 0, node_cnt: 1 }}, /// bfs::Visit{ data: 3, size: Size{ degree: 0, node_cnt: 1 }}, /// bfs::Visit{ data: 5, size: Size{ degree: 0, node_cnt: 1 }}, /// bfs::Visit{ data: 6, size: Size{ degree: 0, node_cnt: 1 }}, /// ]); /// ``` pub fn into_bfs( self ) -> BfsForest<Splitted<IntoIter<T>>> { let size = self.link.size; BfsForest::from( self, size ) } } impl<T:Clone> Clone for Forest<T> { fn clone( &self ) -> Self { let mut forest = Forest::<T>::new(); for child in self.iter() { forest.push_back( child.to_owned() ); } forest } } impl<T> Default for Forest<T> { #[inline] fn default() -> Self { Self::new() }} impl<T> Drop for Forest<T> { fn drop( &mut self ) { while let Some(_) = self.pop_front() {} } } pub struct IntoIter<T> { pub(crate) forest : Forest<T>, pub(crate) marker : PhantomData<Tree<T>>, } impl<T> Iterator for IntoIter<T> { type Item = Tree<T>; #[inline] fn next( &mut self ) -> Option<Tree<T>> { self.forest.pop_front() } #[inline] fn size_hint( &self ) -> ( usize, Option<usize> ) { let degree = self.forest.link.size.degree as usize; ( degree, Some( degree ) ) } } impl<T> ExactSizeIterator for IntoIter<T> {} impl<T> Drop for IntoIter<T> { fn drop( &mut self ) { for _ in self.by_ref() {} } } impl<T> IntoIterator for Forest<T> { type Item = Tree<T>; type IntoIter = IntoIter<T>; #[inline] fn into_iter( self ) -> IntoIter<T> { IntoIter{ forest: self, marker: PhantomData }} } impl<T> FromIterator<Tree<T>> for Forest<T> { fn from_iter<I:IntoIterator<Item=Tree<T>>>( iter: I ) -> Self { let mut iter = iter.into_iter(); let mut children = Forest::<T>::new(); while let Some( node ) = iter.next() { children.push_back( node ); } children } } impl<T> Extend<Tree<T>> for Forest<T> { fn extend<I:IntoIterator<Item=Tree<T>>>( &mut self, iter: I ) { for child in iter.into_iter() { self.push_back( child ); } } } impl<T:Debug> Debug for Forest<T> { fn fmt( &self, f: &mut Formatter ) -> fmt::Result { if self.is_empty() { write!( f, "()" ) } else { write!( f, "( " )?; for child in self.iter() { write!( f, "{:?} ", child )?; } write!( f, ")" ) } } } impl<T:Display> Display for Forest<T> { fn fmt( &self, f: &mut Formatter ) -> fmt::Result { if self.is_empty() { write!( f, "()" ) } else { write!( f, "( " )?; for child in self.iter() { write!( f, "{} ", child )?; } write!( f, ")" ) } } } impl<T:PartialEq> PartialEq for Forest<T> { fn eq( &self, other: &Self ) -> bool { self.iter().eq( other.iter() )} fn ne( &self, other: &Self ) -> bool { self.iter().ne( other.iter() )} } impl<T:Eq> Eq for Forest<T> {} impl<T:PartialOrd> PartialOrd for Forest<T> { fn partial_cmp( &self, other: &Self ) -> Option<Ordering> { self.iter().partial_cmp( other.iter() ) } } impl<T:Ord> Ord for Forest<T> { #[inline] fn cmp( &self, other: &Self ) -> Ordering { self.iter().cmp( other.iter() ) } } impl<T:Hash> Hash for Forest<T> { fn hash<H:Hasher>( &self, state: &mut H ) { for child in self.iter() { child.hash( state ); } } } unsafe impl<T:Send> Send for Forest<T> {} unsafe impl<T:Sync> Sync for Forest<T> {}