1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
//! Client implementation and builder.

mod endpoint;
#[cfg(feature = "tls")]
#[cfg_attr(docsrs, doc(cfg(feature = "tls")))]
mod tls;

pub use endpoint::Endpoint;
#[cfg(feature = "tls")]
pub use tls::ClientTlsConfig;

use super::service::{Connection, DynamicServiceStream};
use crate::{body::BoxBody, client::GrpcService};
use bytes::Bytes;
use http::{
    uri::{InvalidUri, Uri},
    Request, Response,
};
use hyper::client::connect::Connection as HyperConnection;
use std::{
    fmt,
    future::Future,
    hash::Hash,
    pin::Pin,
    task::{Context, Poll},
};
use tokio::{
    io::{AsyncRead, AsyncWrite},
    sync::mpsc::{channel, Sender},
};

use tower::{
    buffer::{self, Buffer},
    discover::{Change, Discover},
    util::{BoxService, Either},
    Service,
};
use tower_balance::p2c::Balance;

type Svc = Either<Connection, BoxService<Request<BoxBody>, Response<hyper::Body>, crate::Error>>;

const DEFAULT_BUFFER_SIZE: usize = 1024;

/// A default batteries included `transport` channel.
///
/// This provides a fully featured http2 gRPC client based on [`hyper::Client`]
/// and `tower` services.
///
/// # Multiplexing requests
///
/// Sending a request on a channel requires a `&mut self` and thus can only send
/// one request in flight. This is intentional and is required to follow the `Service`
/// contract from the `tower` library which this channel implementation is built on
/// top of.
///
/// `tower` itself has a concept of `poll_ready` which is the main mechanism to apply
/// back pressure. `poll_ready` takes a `&mut self` and when it returns `Poll::Ready`
/// we know the `Service` is able to accept only one request before we must `poll_ready`
/// again. Due to this fact any `async fn` that wants to poll for readiness and submit
/// the request must have a `&mut self` reference.
///
/// To work around this and to ease the use of the channel, `Channel` provides a
/// `Clone` implementation that is _cheap_. This is because at the very top level
/// the channel is backed by a `tower_buffer::Buffer` which runs the connection
/// in a background task and provides a `mpsc` channel interface. Due to this
/// cloning the `Channel` type is cheap and encouraged.
#[derive(Clone)]
pub struct Channel {
    svc: Buffer<Svc, Request<BoxBody>>,
}

/// A future that resolves to an HTTP response.
///
/// This is returned by the `Service::call` on [`Channel`].
pub struct ResponseFuture {
    inner: buffer::future::ResponseFuture<<Svc as Service<Request<BoxBody>>>::Future>,
}

impl Channel {
    /// Create a [`Endpoint`] builder that can create a [`Channel`]'s.
    pub fn builder(uri: Uri) -> Endpoint {
        Endpoint::from(uri)
    }

    /// Create an `Endpoint` from a static string.
    ///
    /// ```
    /// # use tonic::transport::Channel;
    /// Channel::from_static("https://example.com");
    /// ```
    pub fn from_static(s: &'static str) -> Endpoint {
        let uri = Uri::from_static(s);
        Self::builder(uri)
    }

    /// Create an `Endpoint` from shared bytes.
    ///
    /// ```
    /// # use tonic::transport::Channel;
    /// Channel::from_shared("https://example.com");
    /// ```
    pub fn from_shared(s: impl Into<Bytes>) -> Result<Endpoint, InvalidUri> {
        let uri = Uri::from_maybe_shared(s.into())?;
        Ok(Self::builder(uri))
    }

    /// Balance a list of [`Endpoint`]'s.
    ///
    /// This creates a [`Channel`] that will load balance accross all the
    /// provided endpoints.
    pub fn balance_list(list: impl Iterator<Item = Endpoint>) -> Self {
        let (channel, mut tx) = Self::balance_channel(DEFAULT_BUFFER_SIZE);
        list.for_each(|endpoint| {
            tx.try_send(Change::Insert(endpoint.uri.clone(), endpoint))
                .unwrap();
        });

        channel
    }

    /// Balance a list of [`Endpoint`]'s.
    ///
    /// This creates a [`Channel`] that will listen to a stream of change events and will add or remove provided endpoints.
    pub fn balance_channel<K>(capacity: usize) -> (Self, Sender<Change<K, Endpoint>>)
    where
        K: Hash + Eq + Send + Clone + 'static,
    {
        let (tx, rx) = channel(capacity);
        let list = DynamicServiceStream::new(rx);
        (Self::balance(list, DEFAULT_BUFFER_SIZE), tx)
    }

    pub(crate) fn new<C>(connector: C, endpoint: Endpoint) -> Result<Self, super::Error>
    where
        C: Service<Uri> + Send + 'static,
        C::Error: Into<crate::Error> + Send,
        C::Future: Unpin + Send,
        C::Response: AsyncRead + AsyncWrite + HyperConnection + Unpin + Send + 'static,
    {
        let buffer_size = endpoint.buffer_size.clone().unwrap_or(DEFAULT_BUFFER_SIZE);

        let svc = Connection::new(connector, endpoint).map_err(super::Error::from_source)?;
        let svc = Buffer::new(Either::A(svc), buffer_size);

        Ok(Channel { svc })
    }

    pub(crate) async fn connect<C>(connector: C, endpoint: Endpoint) -> Result<Self, super::Error>
    where
        C: Service<Uri> + Send + 'static,
        C::Error: Into<crate::Error> + Send,
        C::Future: Unpin + Send,
        C::Response: AsyncRead + AsyncWrite + HyperConnection + Unpin + Send + 'static,
    {
        let buffer_size = endpoint.buffer_size.clone().unwrap_or(DEFAULT_BUFFER_SIZE);

        let svc = Connection::connect(connector, endpoint)
            .await
            .map_err(super::Error::from_source)?;
        let svc = Buffer::new(Either::A(svc), buffer_size);

        Ok(Channel { svc })
    }

    pub(crate) fn balance<D>(discover: D, buffer_size: usize) -> Self
    where
        D: Discover<Service = Connection> + Unpin + Send + 'static,
        D::Error: Into<crate::Error>,
        D::Key: Send + Clone,
    {
        let svc = Balance::from_entropy(discover);

        let svc = BoxService::new(svc);
        let svc = Buffer::new(Either::B(svc), buffer_size);

        Channel { svc }
    }
}

impl GrpcService<BoxBody> for Channel {
    type ResponseBody = hyper::Body;
    type Error = super::Error;
    type Future = ResponseFuture;

    fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        GrpcService::poll_ready(&mut self.svc, cx).map_err(|e| super::Error::from_source(e))
    }

    fn call(&mut self, request: Request<BoxBody>) -> Self::Future {
        let inner = GrpcService::call(&mut self.svc, request);
        ResponseFuture { inner }
    }
}

impl Future for ResponseFuture {
    type Output = Result<Response<hyper::Body>, super::Error>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let val = futures_util::ready!(Pin::new(&mut self.inner).poll(cx))
            .map_err(|e| super::Error::from_source(e))?;
        Ok(val).into()
    }
}

impl fmt::Debug for Channel {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Channel").finish()
    }
}

impl fmt::Debug for ResponseFuture {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ResponseFuture").finish()
    }
}