1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
// Copyright 2015-2017 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! Public key signatures: signing and verification. //! //! Use the `verify` function to verify signatures, passing a reference to the //! algorithm that identifies the algorithm. See the documentation for `verify` //! for examples. //! //! For signature verification, this API treats each combination of parameters //! as a separate algorithm. For example, instead of having a single "RSA" //! algorithm with a verification function that takes a bunch of parameters, //! there are `RSA_PKCS1_2048_8192_SHA256`, `RSA_PKCS1_2048_8192_SHA384`, etc., //! which encode sets of parameter choices into objects. This is designed to //! reduce the risks of algorithm agility and to provide consistency with ECDSA //! and EdDSA. //! //! Currently this module does not support digesting the message to be signed //! separately from the public key operation, as it is currently being //! optimized for Ed25519 and for the implementation of protocols that do not //! requiring signing large messages. An interface for efficiently supporting //! larger messages may be added later. //! //! //! # Algorithm Details //! //! ## `ECDSA_*_ASN1` Details: ASN.1-encoded ECDSA Signatures //! //! The signature is a ASN.1 DER-encoded `Ecdsa-Sig-Value` as described in //! [RFC 3279 Section 2.2.3]. This is the form of ECDSA signature used in //! X.509-related structures and in TLS's `ServerKeyExchange` messages. //! //! The public key is encoding in uncompressed form using the //! Octet-String-to-Elliptic-Curve-Point algorithm in //! [SEC 1: Elliptic Curve Cryptography, Version 2.0]. //! //! During verification, the public key is validated using the ECC Partial //! Public-Key Validation Routine from Section 5.6.2.3.3 of //! [NIST Special Publication 800-56A, revision 2] and Appendix A.3 of the //! NSA's [Suite B implementer's guide to FIPS 186-3]. Note that, as explained //! in the NSA guide, ECC Partial Public-Key Validation is equivalent to ECC //! Full Public-Key Validation for prime-order curves like this one. //! //! ## `ECDSA_*_FIXED` Details: Fixed-length (PKCS#11-style) ECDSA Signatures //! //! The signature is *r*||*s*, where || denotes concatenation, and where both //! *r* and *s* are both big-endian-encoded values that are left-padded to the //! maximum length. A P-256 signature will be 64 bytes long (two 32-byte //! components) and a P-384 signature will be 96 bytes long (two 48-byte //! components). This is the form of ECDSA signature used PKCS#11 and DNSSEC. //! //! The public key is encoding in uncompressed form using the //! Octet-String-to-Elliptic-Curve-Point algorithm in //! [SEC 1: Elliptic Curve Cryptography, Version 2.0]. //! //! During verification, the public key is validated using the ECC Partial //! Public-Key Validation Routine from Section 5.6.2.3.3 of //! [NIST Special Publication 800-56A, revision 2] and Appendix A.3 of the //! NSA's [Suite B implementer's guide to FIPS 186-3]. Note that, as explained //! in the NSA guide, ECC Partial Public-Key Validation is equivalent to ECC //! Full Public-Key Validation for prime-order curves like this one. //! //! ## `RSA_PKCS1_*` Details: RSA PKCS#1 1.5 Signatures //! //! The signature is an RSASSA-PKCS1-v1_5 signature as described in //! [RFC 3447 Section 8.2]. //! //! The public key is encoded as an ASN.1 `RSAPublicKey` as described in //! [RFC 3447 Appendix-A.1.1]. The public key modulus length, rounded *up* to //! the nearest (larger) multiple of 8 bits, must be in the range given in the //! name of the algorithm. The public exponent must be an odd integer of 2-33 //! bits, inclusive. //! //! //! ## `RSA_PSS_*` Details: RSA PSS Signatures //! //! The signature is an RSASSA-PSS signature as described in //! [RFC 3447 Section 8.1]. //! //! The public key is encoded as an ASN.1 `RSAPublicKey` as described in //! [RFC 3447 Appendix-A.1.1]. The public key modulus length, rounded *up* to //! the nearest (larger) multiple of 8 bits, must be in the range given in the //! name of the algorithm. The public exponent must be an odd integer of 2-33 //! bits, inclusive. //! //! During verification, signatures will only be accepted if the MGF1 digest //! algorithm is the same as the message digest algorithm and if the salt //! length is the same length as the message digest. This matches the //! requirements in TLS 1.3 and other recent specifications. //! //! During signing, the message digest algorithm will be used as the MGF1 //! digest algorithm. The salt will be the same length as the message digest. //! This matches the requirements in TLS 1.3 and other recent specifications. //! Additionally, the entire salt is randomly generated separately for each //! signature using the secure random number generator passed to `sign()`. //! //! //! [SEC 1: Elliptic Curve Cryptography, Version 2.0]: //! http://www.secg.org/sec1-v2.pdf //! [NIST Special Publication 800-56A, revision 2]: //! http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf //! [Suite B implementer's guide to FIPS 186-3]: //! https://github.com/briansmith/ring/blob/master/doc/ecdsa.pdf //! [RFC 3279 Section 2.2.3]: //! https://tools.ietf.org/html/rfc3279#section-2.2.3 //! [RFC 3447 Section 8.2]: //! https://tools.ietf.org/html/rfc3447#section-7.2 //! [RFC 3447 Section 8.1]: //! https://tools.ietf.org/html/rfc3447#section-8.1 //! [RFC 3447 Appendix-A.1.1]: //! https://tools.ietf.org/html/rfc3447#appendix-A.1.1 //! //! //! # Examples //! //! ## Signing and verifying with Ed25519 //! //! ``` //! use ring::{ //! rand, //! signature::{self, KeyPair}, //! }; //! //! # fn sign_and_verify_ed25519() -> Result<(), ring::error::Unspecified> { //! // Generate a key pair in PKCS#8 (v2) format. //! let rng = rand::SystemRandom::new(); //! let pkcs8_bytes = signature::Ed25519KeyPair::generate_pkcs8(&rng)?; //! //! // Normally the application would store the PKCS#8 file persistently. Later //! // it would read the PKCS#8 file from persistent storage to use it. //! //! let key_pair = signature::Ed25519KeyPair::from_pkcs8(pkcs8_bytes.as_ref())?; //! //! // Sign the message "hello, world". //! const MESSAGE: &[u8] = b"hello, world"; //! let sig = key_pair.sign(MESSAGE); //! //! // Normally an application would extract the bytes of the signature and //! // send them in a protocol message to the peer(s). Here we just get the //! // public key key directly from the key pair. //! let peer_public_key_bytes = key_pair.public_key().as_ref(); //! //! // Verify the signature of the message using the public key. Normally the //! // verifier of the message would parse the inputs to this code out of the //! // protocol message(s) sent by the signer. //! let peer_public_key = //! signature::UnparsedPublicKey::new(&signature::ED25519, peer_public_key_bytes); //! peer_public_key.verify(MESSAGE, sig.as_ref())?; //! //! # Ok(()) //! # } //! //! # fn main() { sign_and_verify_ed25519().unwrap() } //! ``` //! //! ## Signing and verifying with RSA (PKCS#1 1.5 padding) //! //! By default OpenSSL writes RSA public keys in SubjectPublicKeyInfo format, //! not RSAPublicKey format, and Base64-encodes them (“PEM” format). //! //! To convert the PEM SubjectPublicKeyInfo format (“BEGIN PUBLIC KEY”) to the //! binary RSAPublicKey format needed by `verify()`, use: //! //! ```sh //! openssl rsa -pubin \ //! -in public_key.pem \ //! -inform PEM \ //! -RSAPublicKey_out \ //! -outform DER \ //! -out public_key.der //! ``` //! //! To extract the RSAPublicKey-formatted public key from an ASN.1 (binary) //! DER-encoded RSAPrivateKey format private key file, use: //! //! ```sh //! openssl rsa -in private_key.der \ //! -inform DER \ //! -RSAPublicKey_out \ //! -outform DER \ //! -out public_key.der //! ``` //! //! ``` //! use ring::{rand, signature}; //! //! # #[cfg(feature = "std")] //! fn sign_and_verify_rsa(private_key_path: &std::path::Path, //! public_key_path: &std::path::Path) //! -> Result<(), MyError> { //! // Create an `RsaKeyPair` from the DER-encoded bytes. This example uses //! // a 2048-bit key, but larger keys are also supported. //! let private_key_der = read_file(private_key_path)?; //! let key_pair = signature::RsaKeyPair::from_der(&private_key_der) //! .map_err(|_| MyError::BadPrivateKey)?; //! //! // Sign the message "hello, world", using PKCS#1 v1.5 padding and the //! // SHA256 digest algorithm. //! const MESSAGE: &'static [u8] = b"hello, world"; //! let rng = rand::SystemRandom::new(); //! let mut signature = vec![0; key_pair.public_modulus_len()]; //! key_pair.sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature) //! .map_err(|_| MyError::OOM)?; //! //! // Verify the signature. //! let public_key = //! signature::UnparsedPublicKey::new(&signature::RSA_PKCS1_2048_8192_SHA256, //! read_file(public_key_path)?); //! public_key.verify(MESSAGE, &signature) //! .map_err(|_| MyError::BadSignature) //! } //! //! #[derive(Debug)] //! enum MyError { //! # #[cfg(feature = "std")] //! IO(std::io::Error), //! BadPrivateKey, //! OOM, //! BadSignature, //! } //! //! # #[cfg(feature = "std")] //! fn read_file(path: &std::path::Path) -> Result<Vec<u8>, MyError> { //! use std::io::Read; //! //! let mut file = std::fs::File::open(path).map_err(|e| MyError::IO(e))?; //! let mut contents: Vec<u8> = Vec::new(); //! file.read_to_end(&mut contents).map_err(|e| MyError::IO(e))?; //! Ok(contents) //! } //! # //! # #[cfg(not(feature = "std"))] //! # fn sign_and_verify_rsa(_private_key_path: &std::path::Path, //! # _public_key_path: &std::path::Path) //! # -> Result<(), ()> { //! # Ok(()) //! # } //! # //! # fn main() { //! # let private_key_path = //! # std::path::Path::new("src/rsa/signature_rsa_example_private_key.der"); //! # let public_key_path = //! # std::path::Path::new("src/rsa/signature_rsa_example_public_key.der"); //! # sign_and_verify_rsa(&private_key_path, &public_key_path).unwrap() //! # } //! ``` use crate::{cpu, ec, error, sealed}; use untrusted; pub use crate::ec::{ curve25519::ed25519::{ signing::Ed25519KeyPair, verification::{EdDSAParameters, ED25519}, ED25519_PUBLIC_KEY_LEN, }, suite_b::ecdsa::{ signing::{ EcdsaKeyPair, EcdsaSigningAlgorithm, ECDSA_P256_SHA256_ASN1_SIGNING, ECDSA_P256_SHA256_FIXED_SIGNING, ECDSA_P384_SHA384_ASN1_SIGNING, ECDSA_P384_SHA384_FIXED_SIGNING, }, verification::{ EcdsaVerificationAlgorithm, ECDSA_P256_SHA256_ASN1, ECDSA_P256_SHA256_FIXED, ECDSA_P256_SHA384_ASN1, ECDSA_P384_SHA256_ASN1, ECDSA_P384_SHA384_ASN1, ECDSA_P384_SHA384_FIXED, }, }, }; #[cfg(feature = "alloc")] pub use crate::rsa::{ signing::RsaKeyPair, signing::RsaSubjectPublicKey, verification::{ RsaPublicKeyComponents, RSA_PKCS1_1024_8192_SHA1_FOR_LEGACY_USE_ONLY, RSA_PKCS1_1024_8192_SHA256_FOR_LEGACY_USE_ONLY, RSA_PKCS1_2048_8192_SHA1_FOR_LEGACY_USE_ONLY, RSA_PKCS1_2048_8192_SHA256, RSA_PKCS1_2048_8192_SHA384, RSA_PKCS1_2048_8192_SHA512, RSA_PKCS1_3072_8192_SHA384, RSA_PSS_2048_8192_SHA256, RSA_PSS_2048_8192_SHA384, RSA_PSS_2048_8192_SHA512, }, RsaEncoding, RsaParameters, // `RSA_PKCS1_SHA1` is intentionally not exposed. At a minimum, we'd need // to create test vectors for signing with it, which we don't currently // have. But, it's a bad idea to use SHA-1 anyway, so perhaps we just won't // ever expose it. RSA_PKCS1_SHA256, RSA_PKCS1_SHA384, RSA_PKCS1_SHA512, RSA_PSS_SHA256, RSA_PSS_SHA384, RSA_PSS_SHA512, }; /// A public key signature returned from a signing operation. #[derive(Clone, Copy)] pub struct Signature { value: [u8; MAX_LEN], len: usize, } impl Signature { // Panics if `value` is too long. pub(crate) fn new<F>(fill: F) -> Self where F: FnOnce(&mut [u8; MAX_LEN]) -> usize, { let mut r = Self { value: [0; MAX_LEN], len: 0, }; r.len = fill(&mut r.value); r } } impl AsRef<[u8]> for Signature { fn as_ref(&self) -> &[u8] { &self.value[..self.len] } } /// Key pairs for signing messages (private key and public key). pub trait KeyPair: core::fmt::Debug + Send + Sized + Sync { /// The type of the public key. type PublicKey: AsRef<[u8]> + core::fmt::Debug + Clone + Send + Sized + Sync; /// The public key for the key pair. fn public_key(&self) -> &Self::PublicKey; } /// The longest signature is an ASN.1 P-384 signature where *r* and *s* are of /// maximum length with the leading high bit set on each. Then each component /// will have a tag, a one-byte length, and a one-byte “I'm not negative” /// prefix, and the outer sequence will have a two-byte length. pub(crate) const MAX_LEN: usize = 1/*tag:SEQUENCE*/ + 2/*len*/ + (2 * (1/*tag:INTEGER*/ + 1/*len*/ + 1/*zero*/ + ec::SCALAR_MAX_BYTES)); /// A signature verification algorithm. pub trait VerificationAlgorithm: core::fmt::Debug + Sync + sealed::Sealed { /// Verify the signature `signature` of message `msg` with the public key /// `public_key`. fn verify( &self, public_key: untrusted::Input, msg: untrusted::Input, signature: untrusted::Input, ) -> Result<(), error::Unspecified>; } /// An unparsed, possibly malformed, public key for signature verification. pub struct UnparsedPublicKey<B: AsRef<[u8]>> { algorithm: &'static dyn VerificationAlgorithm, bytes: B, } impl<B: Copy> Copy for UnparsedPublicKey<B> where B: AsRef<[u8]> {} impl<B: Clone> Clone for UnparsedPublicKey<B> where B: AsRef<[u8]>, { fn clone(&self) -> Self { Self { algorithm: self.algorithm, bytes: self.bytes.clone(), } } } impl<B: AsRef<[u8]>> UnparsedPublicKey<B> { /// Construct a new `UnparsedPublicKey`. /// /// No validation of `bytes` is done until `verify()` is called. #[inline] pub fn new(algorithm: &'static dyn VerificationAlgorithm, bytes: B) -> Self { Self { algorithm, bytes } } /// Parses the public key and verifies `signature` is a valid signature of /// `message` using it. /// /// See the [crate::signature] module-level documentation for examples. pub fn verify(&self, message: &[u8], signature: &[u8]) -> Result<(), error::Unspecified> { let _ = cpu::features(); self.algorithm.verify( untrusted::Input::from(self.bytes.as_ref()), untrusted::Input::from(message), untrusted::Input::from(signature), ) } }