1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/*! Raw Pointer Representation This module defines the binary representation of the handle to a `BitSlice` region. This structure is crate-internal, and defines the methods required to store a `BitSlice` pointer in memory and retrieve values from it suitable for work. !*/ use crate::{ domain::*, indices::{ BitIdx, Indexable, }, order::BitOrder, slice::BitSlice, store::BitStore, }; use core::{ fmt::{ self, Debug, Formatter, }, marker::PhantomData, mem::size_of, ptr::NonNull, slice, }; #[cfg(any(test, feature = "alloc"))] use crate::indices::BitTail; /// Width in bits of a pointer on the target machine. const PTR_BITS: usize = size_of::<*const u8>() * 8; /** Union to permit reinterpreting a pointer-shaped value as a read pointer, write pointer, or bare numeric address. # Safety Absolutely none whatsoever. This is probably flirting with undefined behavior, and should be presumed to be the origin site of failure if the crate ever breaks in the future. # Type Parameters - `T`: The referent data type. **/ #[derive(Clone, Copy)] #[doc(hidden)] pub(crate) union Pointer<T> where T: BitStore { /// A shareable pointer to some contended mutable data. a: *const <T as BitStore>::Access, /// A read pointer to some data. r: *const T, /// A write pointer to some data. w: *mut T, /// The pointer address as a bare integer. u: usize, } impl<T> Pointer<T> where T: BitStore { /// Accesses the address as a shared mutable pointer. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// The stored address, interpreted as a shared pointer to a mutable memory /// location. #[inline] pub(crate) fn a(self) -> *const <T as BitStore>::Access { unsafe { self.a } } /// Accesses the address as a read pointer. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// The stored address, as a read pointer. #[inline] pub(crate) fn r(self) -> *const T { unsafe { self.r } } /// Accesses the address as a write pointer. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// The stored address, as a write pointer. #[inline] pub(crate) fn w(self) -> *mut T { unsafe { self.w } } /// Accesses the address as a bare integral value. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// The stored address, as a bare integer. #[inline] pub(crate) fn u(self) -> usize { unsafe { self.u } } } impl<T> From<&T> for Pointer<T> where T: BitStore { fn from(r: &T) -> Self { Self { r } } } impl<T> From<*const T> for Pointer<T> where T: BitStore { fn from(r: *const T) -> Self { Self { r } } } impl<T> From<&mut T> for Pointer<T> where T: BitStore { fn from(w: &mut T) -> Self { Self { w } } } impl<T> From<*mut T> for Pointer<T> where T: BitStore { fn from(w: *mut T) -> Self { Self { w } } } impl<T> From<usize> for Pointer<T> where T: BitStore { fn from(u: usize) -> Self { Self { u } } } /** In-memory representation of `&BitSlice` handles. # Layout This structure is a more complex version of the `*const T`/`usize` tuple that Rust uses to represent slices throughout the language. It breaks the pointer and counter fundamentals into sub-field components. Rust does not have bitfield syntax, so the below description of the element layout is in C++. ```cpp template <typename T> struct BitPtr { size_t ptr_head : __builtin_ctzll(alignof(T)); size_t ptr_data : sizeof(uintptr_t) * 8 - __builtin_ctzll(alignof(T)); size_t len_head : 3; size_t len_bits : sizeof(size_t) * 8 - 3; }; ``` This means that the `BitPtr<T>` structure has three *logical* fields, stored in four segments across the two *structural* fields of the type. The widths and placements of each segment are functions of the size of `*const T` and `usize`, and the alignment of `T`. # Fields This section describes the purpose, meaning, and layout of the four logical fields. ## Data Pointer Aligned pointers to `T` always have low bits available for use to refine the address of a `T` to the address of a `u8`. It is stored in the high bits of the `ptr` field, running from MSb down to (inclusive) `core::mem::align_of::<T>().trailing_zeros()`. ## Bit Counter The memory representation stores a counter of the live bits contained in the slice, starting at the head index. This counter occupies all but the lowest three bits of the `len` structural field. ## Head Bit Index For any fundamental type `T`, `core::mem::align_of::<T>().trailing_zeros() + 3` bits are required to count the bit positions inside it. |Type |Alignment|Trailing Zeros|Count Bits| |:----|--------:|-------------:|---------:| |`u8` | 1| 0| 3| |`u16`| 2| 1| 4| |`u32`| 4| 2| 5| |`u64`| 8| 3| 6| The head bit counter is split such that its bottom three bits are stored in the low bits of the `len` field and the remaining high bits are stored in the low bits of `ptr`. The counter is a value in the range `0 .. (1 << Count)` that serves as a cursor into the zeroth storage element to find the first live bit. # Edge Cases The following value sets are edge cases of valid `BitPtr` structures. ## Null Slice The fully zeroed slot is not a valid member of the `BitPtr<T>` type; it is the sentinel for `Option::<BitPtr<T>>::None`. ## Empty Slice All empty slices have `0` in their `bits` logical field, and do not constrain their `data` or `head` logical fields. The canonical empty slice structure uses `NonNull::<T>::dangling()` as its `data` pointer, and `0` as its `head` index, but any slice structure with `0` as `bits` is considered to be empty, and all empty slices are equivalent to each other. ## Uninhabited Slice The subset of empty slices with non-dangling pointers are considered uninhabited. All `BitPtr` structures preserve their pointer information, even when empty, because they may be the owners of the memory region at the pointer. Uninhabited slices are also unconstrained in their `head` index value. # Type Parameters - `T: BitStore` is the storage type over which the pointer governs. # Safety A `BitPtr` must never be constructed such that the element addressed by `self.pointer().offset(self.elements())` causes an addition overflow. This will be checked in `new()`. # Undefined Behavior Using values of this type directly as pointers or counters will result in undefined behavior. The pointer value will be invalid for the type, and both the pointer and length values will be invalid for the memory model and allocation regime. **/ #[repr(C)] #[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)] pub struct BitPtr<T = u8> where T: BitStore { _ty: PhantomData<T>, /// Two-element bitfield structure, holding pointer and head information. /// /// This stores a pointer to the zeroth element of the slice, and the high /// bits of the head bit cursor. It is typed as a `NonNull<u8>` in order to /// provide null-value optimizations to `Option<BitPtr<T>>`, and because the /// presence of head-bit cursor information in the lowest bits means the /// bit pattern will not uphold alignment properties assumed by /// `NonNull<T>`. /// /// This field cannot be treated as an address of the zeroth byte of the /// slice domain, because the owning handle’s [`BitOrder`] implementation /// governs the bit pattern of the head cursor. /// /// [`BitOrder`]: ../order/trait.BitOrder.html ptr: NonNull<u8>, /// Two-element bitfield structure, holding bit-count and head-index /// information. /// /// This stores the bit count in its highest bits and the low three bits of /// the head `BitIdx` in the lowest three bits. /// /// [`BitIdx`]: ../struct.BitIdx.html len: usize, } impl<T> BitPtr<T> where T: BitStore { /// Marks the bits of `self.ptr` that are the `data` section. pub const PTR_DATA_MASK: usize = !Self::PTR_HEAD_MASK; /// The number of low bits in `self.ptr` that are the high bits of the head /// `BitIdx` cursor. pub const PTR_HEAD_BITS: usize = T::INDX as usize - Self::LEN_HEAD_BITS; /// Marks the bits of `self.ptr` that are the `head` section. pub const PTR_HEAD_MASK: usize = T::MASK as usize >> Self::LEN_HEAD_BITS; /// The number of low bits in `self.len` that are the low bits of the head /// `BitIdx` cursor. /// /// This is always `3`, until Rust tries to target a machine whose bytes are /// not eight bits wide. pub const LEN_HEAD_BITS: usize = 3; /// Marks the bits of `self.len` that are the `head` section. pub const LEN_HEAD_MASK: usize = 0b0111; /// The inclusive maximum number of elements that can be stored in a /// `BitPtr` domain. pub const MAX_ELTS: usize = (Self::MAX_BITS >> 3) + 1; /// The inclusive maximum bit index. pub const MAX_BITS: usize = !0 >> Self::LEN_HEAD_BITS; /// Produces an empty-slice representation. /// /// This has no live bits, and has a dangling pointer. It is useful as a /// default value (and is the function used by `Default`) to indicate /// arbitrary empty slices. /// /// # Returns /// /// An uninhabited, uninhabitable, empty slice. /// /// # Safety /// /// The `BitPtr` returned by this function must never be dereferenced. pub fn empty() -> Self { Self { _ty: PhantomData, ptr: NonNull::dangling(), len: 0, } } /// Produces an uninhabited slice from a bare pointer. /// /// # Parameters /// /// - `ptr`: Some kind of pointer to `T`. /// /// # Returns /// /// If `ptr` is null, then this returns the empty slice; otherwise, the /// returned slice is uninhabited and points to the given address. /// /// # Panics /// /// This function panics if the given pointer is not well aligned to its /// type. /// /// # Safety /// /// The provided pointer must be either null, or valid in the caller’s /// memory model and allocation regime. #[cfg(feature = "alloc")] pub(crate) fn uninhabited(ptr: impl Into<Pointer<T>>) -> Self { let ptr = ptr.into(); // Check that the pointer is properly aligned for the storage type. // Null pointers are always well aligned. assert!( (ptr.u()).trailing_zeros() as usize >= Self::PTR_HEAD_BITS, "Pointer {:p} does not satisfy minimum alignment requirements {}", ptr.r(), Self::PTR_HEAD_BITS, ); Self { _ty: PhantomData, ptr: NonNull::new(ptr.w() as *mut u8) .unwrap_or_else(NonNull::dangling), len: 0, } } /// Creates a new `BitPtr` from its components. /// /// # Parameters /// /// - `data`: A well-aligned pointer to a storage element. /// - `head`: The bit index of the first live bit in the element under /// `*data`. /// - `bits`: The number of live bits in the region the produced `BitPtr<T>` /// describes. /// /// # Returns /// /// If `data` is the null pointer, then this function produces the canonical /// empty slice. If `bits` is `0`, then this function produces an /// uninhabited slice at `data`. Otherwise, this produces a `BitPtr<T>` /// structure of the region described by the arguments. /// /// # Panics /// /// This function panics in the following events: /// /// - `data` is not well aligned to `T`’s requirements. /// - `bits` is larger than `Self::MAX_BITS`. /// - `data` and `bits` describe a `[T]` slice which wraps around the edge /// of the memory space. /// /// # Safety /// /// The caller must provide a `data` pointer and a `bits` counter which /// describe a `[T]` region which is correctly aligned and validly allocated /// in the caller’s memory space. The caller is responsible for ensuring /// that the slice of memory the produced `BitPtr<T>` describes is all /// governable in the caller’s context. pub(crate) fn new( data: impl Into<Pointer<T>>, head: BitIdx<T>, bits: usize, ) -> Self { let data = data.into(); // Null pointers become the empty slice. if data.r().is_null() { return Self::empty(); } assert!( data.u().trailing_zeros() as usize >= Self::PTR_HEAD_BITS, "BitPtr domain pointer ({:p}) to {} must be aligned to at least {}", data.r(), T::TYPENAME, Self::PTR_HEAD_BITS, ); assert!( bits <= Self::MAX_BITS, "BitPtr cannot address {} bits; the maximum is {}", bits, Self::MAX_BITS, ); let elts = head.span(bits).0; let tail = data.r().wrapping_add(elts); assert!( tail >= data.r(), "BitPtr region cannot wrap the address space: {:p} + {:02X} = {:p}", data.r(), elts, tail, ); unsafe { Self::new_unchecked(data, head, bits) } } /// Creates a new `BitPtr<T>` from its components, without any validity /// checks. /// /// # Safety /// /// ***ABSOLUTELY NONE.*** This function *only* packs its arguments into the /// bit pattern of the `BitPtr<T>` type. It should only be used in contexts /// where a previously extant `BitPTR<T>` was constructed with ancestry /// known to have survived [`::new`], and any manipulations of its raw /// components are known to be valid for reconstruction. /// /// # Parameters /// /// See [`::new`]. /// /// # Returns /// /// See [`::new`]. /// /// [`::new`]: #method.new pub(crate) unsafe fn new_unchecked( data: impl Into<Pointer<T>>, head: BitIdx<T>, bits: usize, ) -> Self { let (data, head) = (data.into(), *head as usize); let ptr_data = data.u() & Self::PTR_DATA_MASK; let ptr_head = head >> Self::LEN_HEAD_BITS; let len_head = head & Self::LEN_HEAD_MASK; let len_bits = bits << Self::LEN_HEAD_BITS; let ptr: Pointer<u8> = (ptr_data | ptr_head).into(); Self { _ty: PhantomData, ptr: NonNull::new_unchecked(ptr.w()), len: len_bits | len_head, } } /// Extracts the pointer to the first storage element. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// A pointer to the first storage element in the slice domain. The concrete /// type returned is opaque, and unusable outside this library. /// /// # Safety /// /// This pointer must be valid in the user’s memory model and allocation /// regime in order for the caller to dereference it. #[inline] pub(crate) fn pointer(&self) -> Pointer<T> { (self.ptr.as_ptr() as usize & Self::PTR_DATA_MASK).into() } /// Overwrites the data pointer with a new address. This method does not /// perform safety checks on the new pointer. /// /// # Parameters /// /// - `&mut self` /// - `ptr: impl Into<Pointer<T>>`: The new address of the `BitPtr<T>`’s /// domain. /// /// # Safety /// /// None. The invariants of `::new` must be checked at the caller. #[inline] #[cfg(feature = "alloc")] pub(crate) unsafe fn set_pointer(&mut self, ptr: impl Into<Pointer<T>>) { let mut data = ptr.into(); if data.r().is_null() { *self = Self::empty(); return; } data.u &= Self::PTR_DATA_MASK; data.u |= self.ptr.as_ptr() as usize & Self::PTR_HEAD_MASK; self.ptr = NonNull::new_unchecked(data.w() as *mut u8); } /// Extracts the element cursor of the head bit. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// A `BitIdx` that is the index of the first live bit in the first element. /// This will be in the domain `0 .. T::BITS`. #[inline] pub fn head(&self) -> BitIdx<T> { let ptr = self.ptr.as_ptr() as usize; let ptr_head = (ptr & Self::PTR_HEAD_MASK) << Self::LEN_HEAD_BITS; let len_head = self.len & Self::LEN_HEAD_MASK; ((ptr_head | len_head) as u8).idx() } #[cfg(feature = "alloc")] pub unsafe fn set_head(&mut self, head: BitIdx<T>) { let head = *head as usize; let mut ptr = self.ptr.as_ptr() as usize; // Erase the head section of the pointer value. ptr &= !Self::PTR_HEAD_MASK; // Write the pointer section of the head value into the head section. ptr |= head >> Self::LEN_HEAD_BITS; self.ptr = NonNull::new_unchecked(ptr as *mut u8); // Erase the head section of the length value. self.len &= !Self::LEN_HEAD_MASK; // Write the length section of the head value into the head section. self.len |= head & Self::LEN_HEAD_MASK; } /// Counts how many bits are in the domain of a `BitPtr` slice. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// A count of the live bits in the slice. #[inline] pub fn len(&self) -> usize { self.len >> Self::LEN_HEAD_BITS } /// Overwrites the bit count with a new counter. This does not perform any /// safety checks. /// /// # Parameters /// /// - `&mut self` /// - `len: usize`: A new bit length for the `BitPtr<T>`’s domain. /// /// # Safety /// /// None. The caller must ensure that the invariants of `::new` are upheld. #[inline] pub unsafe fn set_len(&mut self, len: usize) { let n = (len << Self::LEN_HEAD_BITS) | (self.len & Self::LEN_HEAD_MASK); self.len = n; } /// Produces the raw components of the pointer structure. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// - `.0: Pointer<T>`: An opaque pointer to the `BitPtr<T>`’s memory /// region. /// - `.1: BitIdx`: The index of the first live bit in the bit region. /// - `.2: usize`: The number of live bits in the bit region. #[inline] pub(crate) fn raw_parts(&self) -> (Pointer<T>, BitIdx<T>, usize) { (self.pointer(), self.head(), self.len()) } /// Produces the count of all elements in the slice domain. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// The number of `T` elements in the slice domain. /// /// # Safety /// /// This size must be valid in the user’s memory model and allocation /// regime. pub fn elements(&self) -> usize { self.head().span(self.len()).0 } /// Extracts the element cursor of the first dead bit *after* the tail bit. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// A `BitTail` that is the index of the first dead bit after the last live /// bit in the last element. This will almost always be in the domain /// `1 ..= T::BITS`. #[cfg(any(test, feature = "alloc"))] #[inline] pub(crate) fn tail(&self) -> BitTail<T> { let (head, len) = (self.head(), self.len()); if *head == 0 && len == 0 { return 0u8.tail(); } // Compute the in-element tail index as the head plus the length, // modulated to the element width. let tail = (*self.head() as usize + len) & T::MASK as usize; // If the tail is zero, wrap it to `T::BITS` as the maximal. This // upshifts `1` (tail is zero) or `0` (tail is not), then sets the // upshift on the rest of the tail, producing something in the range // `1 ..= T::BITS`. ((((tail == 0) as u8) << T::INDX) | tail as u8).tail() } /// Accesses the element slice behind the pointer as a Rust slice. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// Standard Rust slice handle over the data governed by this pointer. /// /// # Lifetimes /// /// - `'a`: Lifetime for which the data behind the pointer is live. #[inline] pub fn as_slice<'a>(&self) -> &'a [T] { unsafe { slice::from_raw_parts(self.pointer().r, self.elements()) } } /// Accesses the element slice behind the pointer as a Rust mutable slice. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// Standard Rust slice handle over the data governed by this pointer. /// /// # Lifetimes /// /// - `'a`: Lifetime for which the data behind the pointer is live. #[inline] pub fn as_mut_slice<'a>(&self) -> &'a mut [T] { unsafe { slice::from_raw_parts_mut(self.pointer().w, self.elements()) } } /// Accesses the element slice behind the pointer as a shared-mutable slice. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// Standard Rust slice handle over the data governed by this pointer. /// /// # Lifetimes /// /// - `'a`: Lifetime for which the data behind the pointer is live. #[inline] pub fn as_access_slice<'a>(&self) -> &'a [T::Access] { unsafe { slice::from_raw_parts(self.pointer().a, self.elements()) } } /// Gets the domain for the region the pointer describes. /// /// # Parameters /// /// - `self` /// /// # Returns /// /// An enum containing the logical components of the domain governed by /// `self`. #[inline] pub(crate) fn domain<'a>(self) -> BitDomain<'a, T> { self.into() } /// Converts a `BitSlice` handle into its `BitPtr` representation. /// /// # Parameters /// /// - `bs: &BitSlice<O, T>`: a `BitSlice` handle /// /// # Returns /// /// The `BitPtr<T>` structure composing the handle. pub(crate) fn from_bitslice<O>(bs: &BitSlice<O, T>) -> Self where O: BitOrder { let src = unsafe { &*(bs as *const BitSlice<O, T> as *const [()]) }; let ptr = Pointer::from(src.as_ptr() as *const u8); let (ptr, len) = match (ptr.w(), src.len()) { (_, 0) => (NonNull::dangling(), 0), (p, _) if p.is_null() => unreachable!("Rust forbids null refs"), (p, l) => (unsafe { NonNull::new_unchecked(p) }, l), }; Self { ptr, len, _ty: PhantomData } } /// Converts a `BitPtr` structure into an immutable `BitSlice` handle. /// /// # Parameters /// /// - `self` /// /// # Returns /// /// A `BitSlice` handle composed of the `BitPtr` structure. pub(crate) fn into_bitslice<'a, O>(self) -> &'a BitSlice<O, T> where O: BitOrder { unsafe { &*(slice::from_raw_parts( Pointer::from(self.ptr.as_ptr()).r() as *const (), self.len, ) as *const [()] as *const BitSlice<O, T>) } } /// Converts a `BitPtr` structure into a mutable `BitSlice` handle. /// /// # Parameters /// /// - `self` /// /// # Returns /// /// A `BitSlice` handle composed of the `BitPtr` structure. pub(crate) fn into_bitslice_mut<'a, O>(self) -> &'a mut BitSlice<O, T> where O: BitOrder { unsafe { &mut *(slice::from_raw_parts_mut( Pointer::from(self.ptr.as_ptr()).w() as *mut (), self.len, ) as *mut [()] as *mut BitSlice<O, T>) } } /// Cast a `BitPtr<T>` into an equivalent `*mut BitSlice<O, T>`. #[cfg(feature = "alloc")] pub(crate) fn as_mut_ptr<O>(self) -> *mut BitSlice<O, T> where O: BitOrder { self.into_bitslice_mut() as *mut BitSlice<O, T> } /// Cast a `*mut BitSlice<O, T>` raw pointer into an equivalent `BitPtr<T>`. #[cfg(feature = "alloc")] pub(crate) fn from_mut_ptr<O>(ptr: *mut BitSlice<O, T>) -> Self where O: BitOrder { unsafe { &*ptr }.bitptr() } } /** Gets write access to all elements in the underlying storage, including the partial head and tail elements. # Safety This is *unsafe* to use except from known mutable `BitSlice` structures. Mutability is not encoded in the `BitPtr` type system at this time, and thus is not enforced by the compiler yet. **/ impl<T> AsMut<[T]> for BitPtr<T> where T: BitStore { fn as_mut(&mut self) -> &mut [T] { self.as_mut_slice() } } /// Gets read access to all elements in the underlying storage, including the /// partial head and tail elements. impl<T> AsRef<[T]> for BitPtr<T> where T: BitStore { fn as_ref(&self) -> &[T] { self.as_slice() } } impl<'a, O, T> From<&'a BitSlice<O, T>> for BitPtr<T> where O: BitOrder, T: 'a + BitStore { fn from(src: &'a BitSlice<O, T>) -> Self { Self::from_bitslice(src) } } impl<'a, O, T> From<&'a mut BitSlice<O, T>> for BitPtr<T> where O: BitOrder, T: 'a + BitStore { fn from(src: &'a mut BitSlice<O, T>) -> Self { Self::from_bitslice(src) } } /// Produces the empty-slice representation. impl<T> Default for BitPtr<T> where T: BitStore { /// Produces an empty-slice representation. /// /// The empty slice has no size or cursors, and its pointer is the alignment /// of the type. The non-null pointer allows this structure to be null-value /// optimized. fn default() -> Self { Self::empty() } } /// Prints the `BitPtr` data structure for debugging. impl<T> Debug for BitPtr<T> where T: BitStore { fn fmt(&self, f: &mut Formatter) -> fmt::Result { struct HexPtr<T: BitStore>(*const T); impl<T: BitStore> Debug for HexPtr<T> { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "0x{:0>1$X}", self.0 as usize, PTR_BITS >> 2) } } struct BinAddr<T: BitStore>(BitIdx<T>); impl<T: BitStore> Debug for BinAddr<T> { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "0b{:0>1$b}", *self.0, T::INDX as usize) } } write!(f, "BitPtr<{}>", T::TYPENAME)?; f.debug_struct("") .field("data", &HexPtr::<T>(self.pointer().r())) .field("head", &BinAddr::<T>(self.head())) .field("bits", &self.len()) .finish() } } #[cfg(test)] mod tests { use super::*; #[test] fn associated_consts_u8() { assert_eq!(BitPtr::<u8>::PTR_HEAD_BITS, 0); assert_eq!(BitPtr::<u8>::PTR_DATA_MASK, !0); assert_eq!(BitPtr::<u8>::PTR_HEAD_MASK, 0); } #[test] fn associated_consts_u16() { assert_eq!(BitPtr::<u16>::PTR_HEAD_BITS, 1); assert_eq!(BitPtr::<u16>::PTR_DATA_MASK, !0 << 1); assert_eq!(BitPtr::<u16>::PTR_HEAD_MASK, 1); } #[test] fn associated_consts_u32() { assert_eq!(BitPtr::<u32>::PTR_HEAD_BITS, 2); assert_eq!(BitPtr::<u32>::PTR_DATA_MASK, !0 << 2); assert_eq!(BitPtr::<u32>::PTR_HEAD_MASK, 3); } #[cfg(target_pointer_width = "64")] #[test] fn associated_consts_u64() { assert_eq!(BitPtr::<u64>::PTR_HEAD_BITS, 3); assert_eq!(BitPtr::<u64>::PTR_DATA_MASK, !0 << 3); assert_eq!(BitPtr::<u64>::PTR_HEAD_MASK, 7); } #[test] fn ctors() { let data: [u32; 4] = [0; 4]; let bp = BitPtr::<u32>::new(&data as *const u32, 0u8.idx(), 32 * 4); assert_eq!(bp.pointer().r(), &data as *const u32); assert_eq!(bp.elements(), 4); assert_eq!(*bp.head(), 0); assert_eq!(*bp.tail(), 32); } #[test] fn empty() { let data = [0u8; 4]; // anything with 0 bits is unconditionally empty let bp = BitPtr::<u8>::new(&data as *const u8, 2u8.idx(), 0); assert_eq!(bp.len(), 0); assert_eq!(*bp.head(), 2); assert_eq!(*bp.tail(), 2); } #[cfg(not(miri))] #[test] #[should_panic] fn overfull() { BitPtr::<u32>::new(8 as *const u32, 1u8.idx(), BitPtr::<u32>::MAX_BITS + 1); } }