1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
/*! Raw Pointer Representation

This module defines the binary representation of the handle to a `BitSlice`
region. This structure is crate-internal, and defines the methods required to
store a `BitSlice` pointer in memory and retrieve values from it suitable for
work.
!*/

use crate::{
	domain::*,
	indices::{
		BitIdx,
		Indexable,
	},
	order::BitOrder,
	slice::BitSlice,
	store::BitStore,
};

use core::{
	fmt::{
		self,
		Debug,
		Formatter,
	},
	marker::PhantomData,
	mem::size_of,
	ptr::NonNull,
	slice,
};

#[cfg(any(test, feature = "alloc"))]
use crate::indices::BitTail;

/// Width in bits of a pointer on the target machine.
const PTR_BITS: usize = size_of::<*const u8>() * 8;

/** Union to permit reinterpreting a pointer-shaped value as a read pointer,
write pointer, or bare numeric address.

# Safety

Absolutely none whatsoever. This is probably flirting with undefined
behavior, and should be presumed to be the origin site of failure if the
crate ever breaks in the future.

# Type Parameters

- `T`: The referent data type.
**/
#[derive(Clone, Copy)]
#[doc(hidden)]
pub(crate) union Pointer<T>
where T: BitStore {
	/// A shareable pointer to some contended mutable data.
	a: *const <T as BitStore>::Access,
	/// A read pointer to some data.
	r: *const T,
	/// A write pointer to some data.
	w: *mut T,
	/// The pointer address as a bare integer.
	u: usize,
}

impl<T> Pointer<T>
where T: BitStore {
	/// Accesses the address as a shared mutable pointer.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The stored address, interpreted as a shared pointer to a mutable memory
	/// location.
	#[inline]
	pub(crate) fn a(self) -> *const <T as BitStore>::Access {
		unsafe { self.a }
	}

	/// Accesses the address as a read pointer.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The stored address, as a read pointer.
	#[inline]
	pub(crate) fn r(self) -> *const T {
		unsafe { self.r }
	}

	/// Accesses the address as a write pointer.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The stored address, as a write pointer.
	#[inline]
	pub(crate) fn w(self) -> *mut T {
		unsafe { self.w }
	}

	/// Accesses the address as a bare integral value.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The stored address, as a bare integer.
	#[inline]
	pub(crate) fn u(self) -> usize {
		unsafe { self.u }
	}
}

impl<T> From<&T> for Pointer<T>
where T: BitStore {
	fn from(r: &T) -> Self {
		Self { r }
	}
}

impl<T> From<*const T> for Pointer<T>
where T: BitStore {
	fn from(r: *const T) -> Self {
		Self { r }
	}
}

impl<T> From<&mut T> for Pointer<T>
where T: BitStore {
	fn from(w: &mut T) -> Self {
		Self { w }
	}
}

impl<T> From<*mut T> for Pointer<T>
where T: BitStore {
	fn from(w: *mut T) -> Self {
		Self { w }
	}
}

impl<T> From<usize> for Pointer<T>
where T: BitStore {
	fn from(u: usize) -> Self {
		Self { u }
	}
}

/** In-memory representation of `&BitSlice` handles.

# Layout

This structure is a more complex version of the `*const T`/`usize` tuple that
Rust uses to represent slices throughout the language. It breaks the pointer and
counter fundamentals into sub-field components. Rust does not have bitfield
syntax, so the below description of the element layout is in C++.

```cpp
template <typename T>
struct BitPtr {
  size_t ptr_head : __builtin_ctzll(alignof(T));
  size_t ptr_data : sizeof(uintptr_t) * 8
                  - __builtin_ctzll(alignof(T));

  size_t len_head : 3;
  size_t len_bits : sizeof(size_t) * 8 - 3;
};
```

This means that the `BitPtr<T>` structure has three *logical* fields, stored in
four segments across the two *structural* fields of the type. The widths and
placements of each segment are functions of the size of `*const T` and `usize`,
and the alignment of `T`.

# Fields

This section describes the purpose, meaning, and layout of the four logical
fields.

## Data Pointer

Aligned pointers to `T` always have low bits available for use to refine the
address of a `T` to the address of a `u8`. It is stored in the high bits of the
`ptr` field, running from MSb down to (inclusive)
`core::mem::align_of::<T>().trailing_zeros()`.

## Bit Counter

The memory representation stores a counter of the live bits contained in the
slice, starting at the head index. This counter occupies all but the lowest
three bits of the `len` structural field.

## Head Bit Index

For any fundamental type `T`, `core::mem::align_of::<T>().trailing_zeros() + 3`
bits are required to count the bit positions inside it.

|Type |Alignment|Trailing Zeros|Count Bits|
|:----|--------:|-------------:|---------:|
|`u8` |        1|             0|         3|
|`u16`|        2|             1|         4|
|`u32`|        4|             2|         5|
|`u64`|        8|             3|         6|

The head bit counter is split such that its bottom three bits are stored in the
low bits of the `len` field and the remaining high bits are stored in the low
bits of `ptr`.

The counter is a value in the range `0 .. (1 << Count)` that serves as a cursor
into the zeroth storage element to find the first live bit.

# Edge Cases

The following value sets are edge cases of valid `BitPtr` structures.

## Null Slice

The fully zeroed slot is not a valid member of the `BitPtr<T>` type; it is the
sentinel for `Option::<BitPtr<T>>::None`.

## Empty Slice

All empty slices have `0` in their `bits` logical field, and do not constrain
their `data` or `head` logical fields. The canonical empty slice structure uses
`NonNull::<T>::dangling()` as its `data` pointer, and `0` as its `head` index,
but any slice structure with `0` as `bits` is considered to be empty, and all
empty slices are equivalent to each other.

## Uninhabited Slice

The subset of empty slices with non-dangling pointers are considered
uninhabited. All `BitPtr` structures preserve their pointer information, even
when empty, because they may be the owners of the memory region at the pointer.
Uninhabited slices are also unconstrained in their `head` index value.

# Type Parameters

- `T: BitStore` is the storage type over which the pointer governs.

# Safety

A `BitPtr` must never be constructed such that the element addressed by
`self.pointer().offset(self.elements())` causes an addition overflow. This will
be checked in `new()`.

# Undefined Behavior

Using values of this type directly as pointers or counters will result in
undefined behavior. The pointer value will be invalid for the type, and both the
pointer and length values will be invalid for the memory model and allocation
regime.
**/
#[repr(C)]
#[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub struct BitPtr<T = u8>
where T: BitStore {
	_ty: PhantomData<T>,
	/// Two-element bitfield structure, holding pointer and head information.
	///
	/// This stores a pointer to the zeroth element of the slice, and the high
	/// bits of the head bit cursor. It is typed as a `NonNull<u8>` in order to
	/// provide null-value optimizations to `Option<BitPtr<T>>`, and because the
	/// presence of head-bit cursor information in the lowest bits means the
	/// bit pattern will not uphold alignment properties assumed by
	/// `NonNull<T>`.
	///
	/// This field cannot be treated as an address of the zeroth byte of the
	/// slice domain, because the owning handle’s [`BitOrder`] implementation
	/// governs the bit pattern of the head cursor.
	///
	/// [`BitOrder`]: ../order/trait.BitOrder.html
	ptr: NonNull<u8>,
	/// Two-element bitfield structure, holding bit-count and head-index
	/// information.
	///
	/// This stores the bit count in its highest bits and the low three bits of
	/// the head `BitIdx` in the lowest three bits.
	///
	/// [`BitIdx`]: ../struct.BitIdx.html
	len: usize,
}

impl<T> BitPtr<T>
where T: BitStore {
	/// Marks the bits of `self.ptr` that are the `data` section.
	pub const PTR_DATA_MASK: usize = !Self::PTR_HEAD_MASK;

	/// The number of low bits in `self.ptr` that are the high bits of the head
	/// `BitIdx` cursor.
	pub const PTR_HEAD_BITS: usize = T::INDX as usize - Self::LEN_HEAD_BITS;

	/// Marks the bits of `self.ptr` that are the `head` section.
	pub const PTR_HEAD_MASK: usize = T::MASK as usize >> Self::LEN_HEAD_BITS;

	/// The number of low bits in `self.len` that are the low bits of the head
	/// `BitIdx` cursor.
	///
	/// This is always `3`, until Rust tries to target a machine whose bytes are
	/// not eight bits wide.
	pub const LEN_HEAD_BITS: usize = 3;

	/// Marks the bits of `self.len` that are the `head` section.
	pub const LEN_HEAD_MASK: usize = 0b0111;

	/// The inclusive maximum number of elements that can be stored in a
	/// `BitPtr` domain.
	pub const MAX_ELTS: usize = (Self::MAX_BITS >> 3) + 1;

	/// The inclusive maximum bit index.
	pub const MAX_BITS: usize = !0 >> Self::LEN_HEAD_BITS;

	/// Produces an empty-slice representation.
	///
	/// This has no live bits, and has a dangling pointer. It is useful as a
	/// default value (and is the function used by `Default`) to indicate
	/// arbitrary empty slices.
	///
	/// # Returns
	///
	/// An uninhabited, uninhabitable, empty slice.
	///
	/// # Safety
	///
	/// The `BitPtr` returned by this function must never be dereferenced.
	pub fn empty() -> Self {
		Self {
			_ty: PhantomData,
			ptr: NonNull::dangling(),
			len: 0,
		}
	}

	/// Produces an uninhabited slice from a bare pointer.
	///
	/// # Parameters
	///
	/// - `ptr`: Some kind of pointer to `T`.
	///
	/// # Returns
	///
	/// If `ptr` is null, then this returns the empty slice; otherwise, the
	/// returned slice is uninhabited and points to the given address.
	///
	/// # Panics
	///
	/// This function panics if the given pointer is not well aligned to its
	/// type.
	///
	/// # Safety
	///
	/// The provided pointer must be either null, or valid in the caller’s
	/// memory model and allocation regime.
	#[cfg(feature = "alloc")]
	pub(crate) fn uninhabited(ptr: impl Into<Pointer<T>>) -> Self {
		let ptr = ptr.into();
		//  Check that the pointer is properly aligned for the storage type.
		//  Null pointers are always well aligned.
		assert!(
			(ptr.u()).trailing_zeros() as usize >= Self::PTR_HEAD_BITS,
			"Pointer {:p} does not satisfy minimum alignment requirements {}",
			ptr.r(),
			Self::PTR_HEAD_BITS,
		);
		Self {
			_ty: PhantomData,
			ptr: NonNull::new(ptr.w() as *mut u8)
				.unwrap_or_else(NonNull::dangling),
			len: 0,
		}
	}

	/// Creates a new `BitPtr` from its components.
	///
	/// # Parameters
	///
	/// - `data`: A well-aligned pointer to a storage element.
	/// - `head`: The bit index of the first live bit in the element under
	///   `*data`.
	/// - `bits`: The number of live bits in the region the produced `BitPtr<T>`
	///   describes.
	///
	/// # Returns
	///
	/// If `data` is the null pointer, then this function produces the canonical
	/// empty slice. If `bits` is `0`, then this function produces an
	/// uninhabited slice at `data`. Otherwise, this produces a `BitPtr<T>`
	/// structure of the region described by the arguments.
	///
	/// # Panics
	///
	/// This function panics in the following events:
	///
	/// - `data` is not well aligned to `T`’s requirements.
	/// - `bits` is larger than `Self::MAX_BITS`.
	/// - `data` and `bits` describe a `[T]` slice which wraps around the edge
	///   of the memory space.
	///
	/// # Safety
	///
	/// The caller must provide a `data` pointer and a `bits` counter which
	/// describe a `[T]` region which is correctly aligned and validly allocated
	/// in the caller’s memory space. The caller is responsible for ensuring
	/// that the slice of memory the produced `BitPtr<T>` describes is all
	/// governable in the caller’s context.
	pub(crate) fn new(
		data: impl Into<Pointer<T>>,
		head: BitIdx<T>,
		bits: usize,
	) -> Self {
		let data = data.into();

		//  Null pointers become the empty slice.
		if data.r().is_null() {
			return Self::empty();
		}

		assert!(
			data.u().trailing_zeros() as usize >= Self::PTR_HEAD_BITS,
			"BitPtr domain pointer ({:p}) to {} must be aligned to at least {}",
			data.r(),
			T::TYPENAME,
			Self::PTR_HEAD_BITS,
		);

		assert!(
			bits <= Self::MAX_BITS,
			"BitPtr cannot address {} bits; the maximum is {}",
			bits,
			Self::MAX_BITS,
		);

		let elts = head.span(bits).0;
		let tail = data.r().wrapping_add(elts);
		assert!(
			tail >= data.r(),
			"BitPtr region cannot wrap the address space: {:p} + {:02X} = {:p}",
			data.r(),
			elts,
			tail,
		);

		unsafe { Self::new_unchecked(data, head, bits) }
	}

	/// Creates a new `BitPtr<T>` from its components, without any validity
	/// checks.
	///
	/// # Safety
	///
	/// ***ABSOLUTELY NONE.*** This function *only* packs its arguments into the
	/// bit pattern of the `BitPtr<T>` type. It should only be used in contexts
	/// where a previously extant `BitPTR<T>` was constructed with ancestry
	/// known to have survived [`::new`], and any manipulations of its raw
	/// components are known to be valid for reconstruction.
	///
	/// # Parameters
	///
	/// See [`::new`].
	///
	/// # Returns
	///
	/// See [`::new`].
	///
	/// [`::new`]: #method.new
	pub(crate) unsafe fn new_unchecked(
		data: impl Into<Pointer<T>>,
		head: BitIdx<T>,
		bits: usize,
	) -> Self {
		let (data, head) = (data.into(), *head as usize);

		let ptr_data = data.u() & Self::PTR_DATA_MASK;
		let ptr_head = head >> Self::LEN_HEAD_BITS;

		let len_head = head & Self::LEN_HEAD_MASK;
		let len_bits = bits << Self::LEN_HEAD_BITS;

		let ptr: Pointer<u8> = (ptr_data | ptr_head).into();

		Self {
			_ty: PhantomData,
			ptr: NonNull::new_unchecked(ptr.w()),
			len: len_bits | len_head,
		}
	}

	/// Extracts the pointer to the first storage element.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A pointer to the first storage element in the slice domain. The concrete
	/// type returned is opaque, and unusable outside this library.
	///
	/// # Safety
	///
	/// This pointer must be valid in the user’s memory model and allocation
	/// regime in order for the caller to dereference it.
	#[inline]
	pub(crate) fn pointer(&self) -> Pointer<T> {
		(self.ptr.as_ptr() as usize & Self::PTR_DATA_MASK).into()
	}

	/// Overwrites the data pointer with a new address. This method does not
	/// perform safety checks on the new pointer.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `ptr: impl Into<Pointer<T>>`: The new address of the `BitPtr<T>`’s
	///   domain.
	///
	/// # Safety
	///
	/// None. The invariants of `::new` must be checked at the caller.
	#[inline]
	#[cfg(feature = "alloc")]
	pub(crate) unsafe fn set_pointer(&mut self, ptr: impl Into<Pointer<T>>) {
		let mut data = ptr.into();
		if data.r().is_null() {
			*self = Self::empty();
			return;
		}
		data.u &= Self::PTR_DATA_MASK;
		data.u |= self.ptr.as_ptr() as usize & Self::PTR_HEAD_MASK;
		self.ptr = NonNull::new_unchecked(data.w() as *mut u8);
	}

	/// Extracts the element cursor of the head bit.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A `BitIdx` that is the index of the first live bit in the first element.
	/// This will be in the domain `0 .. T::BITS`.
	#[inline]
	pub fn head(&self) -> BitIdx<T> {
		let ptr = self.ptr.as_ptr() as usize;
		let ptr_head = (ptr & Self::PTR_HEAD_MASK) << Self::LEN_HEAD_BITS;
		let len_head = self.len & Self::LEN_HEAD_MASK;
		((ptr_head | len_head) as u8).idx()
	}

	#[cfg(feature = "alloc")]
	pub unsafe fn set_head(&mut self, head: BitIdx<T>) {
		let head = *head as usize;
		let mut ptr = self.ptr.as_ptr() as usize;

		//  Erase the head section of the pointer value.
		ptr &= !Self::PTR_HEAD_MASK;
		//  Write the pointer section of the head value into the head section.
		ptr |= head >> Self::LEN_HEAD_BITS;
		self.ptr = NonNull::new_unchecked(ptr as *mut u8);

		//  Erase the head section of the length value.
		self.len &= !Self::LEN_HEAD_MASK;
		//  Write the length section of the head value into the head section.
		self.len |= head & Self::LEN_HEAD_MASK;
	}

	/// Counts how many bits are in the domain of a `BitPtr` slice.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A count of the live bits in the slice.
	#[inline]
	pub fn len(&self) -> usize {
		self.len >> Self::LEN_HEAD_BITS
	}

	/// Overwrites the bit count with a new counter. This does not perform any
	/// safety checks.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `len: usize`: A new bit length for the `BitPtr<T>`’s domain.
	///
	/// # Safety
	///
	/// None. The caller must ensure that the invariants of `::new` are upheld.
	#[inline]
	pub unsafe fn set_len(&mut self, len: usize) {
		let n = (len << Self::LEN_HEAD_BITS) | (self.len & Self::LEN_HEAD_MASK);
		self.len = n;
	}

	/// Produces the raw components of the pointer structure.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// - `.0: Pointer<T>`: An opaque pointer to the `BitPtr<T>`’s memory
	///   region.
	/// - `.1: BitIdx`: The index of the first live bit in the bit region.
	/// - `.2: usize`: The number of live bits in the bit region.
	#[inline]
	pub(crate) fn raw_parts(&self) -> (Pointer<T>, BitIdx<T>, usize) {
		(self.pointer(), self.head(), self.len())
	}

	/// Produces the count of all elements in the slice domain.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The number of `T` elements in the slice domain.
	///
	/// # Safety
	///
	/// This size must be valid in the user’s memory model and allocation
	/// regime.
	pub fn elements(&self) -> usize {
		self.head().span(self.len()).0
	}

	/// Extracts the element cursor of the first dead bit *after* the tail bit.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A `BitTail` that is the index of the first dead bit after the last live
	/// bit in the last element. This will almost always be in the domain
	/// `1 ..= T::BITS`.
	#[cfg(any(test, feature = "alloc"))]
	#[inline]
	pub(crate) fn tail(&self) -> BitTail<T> {
		let (head, len) = (self.head(), self.len());

		if *head == 0 && len == 0 {
			return 0u8.tail();
		}

		//  Compute the in-element tail index as the head plus the length,
		//  modulated to the element width.
		let tail = (*self.head() as usize + len) & T::MASK as usize;
		//  If the tail is zero, wrap it to `T::BITS` as the maximal. This
		//  upshifts `1` (tail is zero) or `0` (tail is not), then sets the
		//  upshift on the rest of the tail, producing something in the range
		//  `1 ..= T::BITS`.
		((((tail == 0) as u8) << T::INDX) | tail as u8).tail()
	}

	/// Accesses the element slice behind the pointer as a Rust slice.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Standard Rust slice handle over the data governed by this pointer.
	///
	/// # Lifetimes
	///
	/// - `'a`: Lifetime for which the data behind the pointer is live.
	#[inline]
	pub fn as_slice<'a>(&self) -> &'a [T] {
		unsafe { slice::from_raw_parts(self.pointer().r, self.elements()) }
	}

	/// Accesses the element slice behind the pointer as a Rust mutable slice.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Standard Rust slice handle over the data governed by this pointer.
	///
	/// # Lifetimes
	///
	/// - `'a`: Lifetime for which the data behind the pointer is live.
	#[inline]
	pub fn as_mut_slice<'a>(&self) -> &'a mut [T] {
		unsafe { slice::from_raw_parts_mut(self.pointer().w, self.elements()) }
	}

	/// Accesses the element slice behind the pointer as a shared-mutable slice.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Standard Rust slice handle over the data governed by this pointer.
	///
	/// # Lifetimes
	///
	/// - `'a`: Lifetime for which the data behind the pointer is live.
	#[inline]
	pub fn as_access_slice<'a>(&self) -> &'a [T::Access] {
		unsafe { slice::from_raw_parts(self.pointer().a, self.elements()) }
	}

	/// Gets the domain for the region the pointer describes.
	///
	/// # Parameters
	///
	/// - `self`
	///
	/// # Returns
	///
	/// An enum containing the logical components of the domain governed by
	/// `self`.
	#[inline]
	pub(crate) fn domain<'a>(self) -> BitDomain<'a, T> {
		self.into()
	}

	/// Converts a `BitSlice` handle into its `BitPtr` representation.
	///
	/// # Parameters
	///
	/// - `bs: &BitSlice<O, T>`: a `BitSlice` handle
	///
	/// # Returns
	///
	/// The `BitPtr<T>` structure composing the handle.
	pub(crate) fn from_bitslice<O>(bs: &BitSlice<O, T>) -> Self
	where O: BitOrder {
		let src = unsafe { &*(bs as *const BitSlice<O, T> as *const [()]) };
		let ptr = Pointer::from(src.as_ptr() as *const u8);
		let (ptr, len) = match (ptr.w(), src.len()) {
			(_, 0) => (NonNull::dangling(), 0),
			(p, _) if p.is_null() => unreachable!("Rust forbids null refs"),
			(p, l) => (unsafe { NonNull::new_unchecked(p) }, l),
		};
		Self { ptr, len, _ty: PhantomData }
	}

	/// Converts a `BitPtr` structure into an immutable `BitSlice` handle.
	///
	/// # Parameters
	///
	/// - `self`
	///
	/// # Returns
	///
	/// A `BitSlice` handle composed of the `BitPtr` structure.
	pub(crate) fn into_bitslice<'a, O>(self) -> &'a BitSlice<O, T>
	where O: BitOrder {
		unsafe {
			&*(slice::from_raw_parts(
				Pointer::from(self.ptr.as_ptr()).r() as *const (),
				self.len,
			) as *const [()] as *const BitSlice<O, T>)
		}
	}

	/// Converts a `BitPtr` structure into a mutable `BitSlice` handle.
	///
	/// # Parameters
	///
	/// - `self`
	///
	/// # Returns
	///
	/// A `BitSlice` handle composed of the `BitPtr` structure.
	pub(crate) fn into_bitslice_mut<'a, O>(self) -> &'a mut BitSlice<O, T>
	where O: BitOrder {
		unsafe {
			&mut *(slice::from_raw_parts_mut(
				Pointer::from(self.ptr.as_ptr()).w() as *mut (),
				self.len,
			) as *mut [()] as *mut BitSlice<O, T>)
		}
	}

	/// Cast a `BitPtr<T>` into an equivalent `*mut BitSlice<O, T>`.
	#[cfg(feature = "alloc")]
	pub(crate) fn as_mut_ptr<O>(self) -> *mut BitSlice<O, T>
	where O: BitOrder {
		self.into_bitslice_mut() as *mut BitSlice<O, T>
	}

	/// Cast a `*mut BitSlice<O, T>` raw pointer into an equivalent `BitPtr<T>`.
	#[cfg(feature = "alloc")]
	pub(crate) fn from_mut_ptr<O>(ptr: *mut BitSlice<O, T>) -> Self
	where O: BitOrder {
		unsafe { &*ptr }.bitptr()
	}
}

/** Gets write access to all elements in the underlying storage, including the
partial head and tail elements.

# Safety

This is *unsafe* to use except from known mutable `BitSlice` structures.
Mutability is not encoded in the `BitPtr` type system at this time, and thus is
not enforced by the compiler yet.
**/
impl<T> AsMut<[T]> for BitPtr<T>
where T: BitStore {
	fn as_mut(&mut self) -> &mut [T] {
		self.as_mut_slice()
	}
}

/// Gets read access to all elements in the underlying storage, including the
/// partial head and tail elements.
impl<T> AsRef<[T]> for BitPtr<T>
where T: BitStore {
	fn as_ref(&self) -> &[T] {
		self.as_slice()
	}
}

impl<'a, O, T> From<&'a BitSlice<O, T>> for BitPtr<T>
where O: BitOrder, T: 'a + BitStore {
	fn from(src: &'a BitSlice<O, T>) -> Self {
		Self::from_bitslice(src)
	}
}

impl<'a, O, T> From<&'a mut BitSlice<O, T>> for BitPtr<T>
where O: BitOrder, T: 'a + BitStore {
	fn from(src: &'a mut BitSlice<O, T>) -> Self {
		Self::from_bitslice(src)
	}
}

/// Produces the empty-slice representation.
impl<T> Default for BitPtr<T>
where T: BitStore {
	/// Produces an empty-slice representation.
	///
	/// The empty slice has no size or cursors, and its pointer is the alignment
	/// of the type. The non-null pointer allows this structure to be null-value
	/// optimized.
	fn default() -> Self {
		Self::empty()
	}
}

/// Prints the `BitPtr` data structure for debugging.
impl<T> Debug for BitPtr<T>
where T: BitStore {
	fn fmt(&self, f: &mut Formatter) -> fmt::Result {
		struct HexPtr<T: BitStore>(*const T);
		impl<T: BitStore> Debug for HexPtr<T> {
			fn fmt(&self, f: &mut Formatter) -> fmt::Result {
				write!(f, "0x{:0>1$X}", self.0 as usize, PTR_BITS >> 2)
			}
		}

		struct BinAddr<T: BitStore>(BitIdx<T>);
		impl<T: BitStore> Debug for BinAddr<T> {
			fn fmt(&self, f: &mut Formatter) -> fmt::Result {
				write!(f, "0b{:0>1$b}", *self.0, T::INDX as usize)
			}
		}

		write!(f, "BitPtr<{}>", T::TYPENAME)?;
		f.debug_struct("")
			.field("data", &HexPtr::<T>(self.pointer().r()))
			.field("head", &BinAddr::<T>(self.head()))
			.field("bits", &self.len())
			.finish()
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn associated_consts_u8() {
		assert_eq!(BitPtr::<u8>::PTR_HEAD_BITS, 0);

		assert_eq!(BitPtr::<u8>::PTR_DATA_MASK, !0);
		assert_eq!(BitPtr::<u8>::PTR_HEAD_MASK, 0);
	}

	#[test]
	fn associated_consts_u16() {
		assert_eq!(BitPtr::<u16>::PTR_HEAD_BITS, 1);

		assert_eq!(BitPtr::<u16>::PTR_DATA_MASK, !0 << 1);
		assert_eq!(BitPtr::<u16>::PTR_HEAD_MASK, 1);
	}

	#[test]
	fn associated_consts_u32() {
		assert_eq!(BitPtr::<u32>::PTR_HEAD_BITS, 2);

		assert_eq!(BitPtr::<u32>::PTR_DATA_MASK, !0 << 2);
		assert_eq!(BitPtr::<u32>::PTR_HEAD_MASK, 3);
	}

	#[cfg(target_pointer_width = "64")]
	#[test]
	fn associated_consts_u64() {
		assert_eq!(BitPtr::<u64>::PTR_HEAD_BITS, 3);

		assert_eq!(BitPtr::<u64>::PTR_DATA_MASK, !0 << 3);
		assert_eq!(BitPtr::<u64>::PTR_HEAD_MASK, 7);
	}

	#[test]
	fn ctors() {
		let data: [u32; 4] = [0; 4];
		let bp = BitPtr::<u32>::new(&data as *const u32, 0u8.idx(), 32 * 4);
		assert_eq!(bp.pointer().r(), &data as *const u32);
		assert_eq!(bp.elements(), 4);
		assert_eq!(*bp.head(), 0);
		assert_eq!(*bp.tail(), 32);
	}

	#[test]
	fn empty() {
		let data = [0u8; 4];
		//  anything with 0 bits is unconditionally empty
		let bp = BitPtr::<u8>::new(&data as *const u8, 2u8.idx(), 0);

		assert_eq!(bp.len(), 0);
		assert_eq!(*bp.head(), 2);
		assert_eq!(*bp.tail(), 2);
	}

	#[cfg(not(miri))]
	#[test]
	#[should_panic]
	fn overfull() {
		BitPtr::<u32>::new(8 as *const u32, 1u8.idx(), BitPtr::<u32>::MAX_BITS + 1);
	}
}