1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/*! Utility macros for constructing data structures and implementing bulk types.

The public macros are `bits!`, `bitvec!`, and `bitbox!`.
!*/

#[macro_use]
#[doc(hidden)]
pub mod internal;

/** Construct a `&BitSlice` out of a literal array in source code, like `vec!`.

`bits!` can be invoked in a number of ways. It takes the name of a `BitOrder`
implementation, the name of a `BitStore`-implementing fundamental (which must be
one of `u8`, `u16`, `u32`, or `u64`), and zero or more fundamentals (integer,
floating-point) which are used to build the bits. Each fundamental literal
corresponds to one bit, and is considered to represent `1` if it is any other
value than exactly zero.

`bits!` can be invoked with no specifiers, a `BitOrder` specifier, or a
`BitOrder` and a `BitStore` specifier. It cannot be invoked with a `BitStore`
specifier but no `BitOrder` specifier, due to overlap in how those tokens are
matched by the macro system.

Like `vec!`, `bits!` supports bit lists `[0, 1, …]` and repetition markers
`[1; n]`.

# Examples

```rust
use bitvec::prelude::*;

bits![Msb0, u8; 0, 1];
bits![Lsb0, u8; 0, 1,];
bits![Msb0; 0, 1];
bits![Lsb0; 0, 1,];
bits![0, 1];
bits![0, 1,];
bits![0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0];
bits![Msb0, u8; 1; 5];
bits![Lsb0; 0; 5];
bits![1; 5];
bits![Local; 0, 1,];
```
**/
#[macro_export]
macro_rules! bits {
	//  Sequence syntax `[bit (, bit)*]` or `[(bit ,)*]`

	//  Explicit order and store.
	($order:ident, $store:ident; $($val:expr),* $(,)?) => {{
		static DATA: &[$store] = &$crate::__bits_store_array!(
			$order, $store; $($val),*
		);
		&$crate::__bits_from_slice!(
			$order, $store, $crate::__count!($($val),*), DATA
		)
	}};
	/* Duplicate arms, differing in `$order:ident` and `$order:path`, force the
	matcher to wrap a `:path`, which is `[:tt]`, as a single opaque `:tt` for
	propagation through the macro call. Since the literal `$order` values will
	match as `:ident`, not `:path`, this will only enter for orderings that the
	rest of the macros would not be able to inspect and special-case *anyway*.
	*/
	($order:path, $store:ident; $($val:expr),* $(,)?) => {{
		static DATA: &[$store] = &$crate::__bits_store_array!(
			$order, $store; $($val),*
		);
		&$crate::__bits_from_slice!(
			$order, $store, $crate::__count!($($val),*), DATA
		)
	}};

	//  Explicit order, default store.
	($order:ident; $($val:expr),* $(,)?) => {
		$crate::bits!($order, usize; $($val),*)
	};
	($order:path; $($val:expr),* $(,)?) => {
		$crate::bits!($order, usize; $($val),*)
	};

	//  Default order and store.
	($($val:expr),* $(,)?) => {
		$crate::bits!(Local, usize; $($val),*)
	};

	//  Repetition syntax `[bit ; count]`
	//  NOTE: `count` must be `const`, as this is a non-allocating macro.

	//  Explicit order and store.
	($order:ident, $store:ident; $val:expr; $len:expr) => {{
		static DATA: &[$store] = &[
			$crate::__extend_bool!($val, $store);
			$crate::store::elts::<$store>($len)
		];
		&$crate::__bits_from_slice!($order, $store, $len, DATA)
	}};
	($order:path, $store:ident; $val:expr; $len:expr) => {{
		static DATA: &[$store] = &[
			$crate::__extend_bool!($val, $store);
			$crate::store::elts::<$store>($len)
		];
		&$crate::__bits_from_slice!($order, $store, $len, DATA)
	}};

	//  Explicit order, default store.
	($order:ident; $val:expr; $len:expr) => {
		$crate::bits!($order, usize; $val; $len)
	};
	($order:path; $val:expr; $len:expr) => {
		$crate::bits!($order, usize; $val; $len)
	};

	//  Default order and store.
	($val:expr; $len:expr) => {
		$crate::bits!(Local, usize; $val; $len)
	};
}

/** Construct a `BitVec` out of a literal array in source code, like `vec!`.

`bitvec!` can be invoked in a number of ways. It takes the name of a `BitOrder`
implementation, the name of a `BitStore`-implementing fundamental, and zero or
more fundamentals (integer, floating-point, or boolean) which are used to build
the bits. Each fundamental literal corresponds to one bit, and is considered to
represent `1` if it is any other value than exactly zero.

`bitvec!` can be invoked with no specifiers, a `BitOrder` specifier, or a
`BitOrder` and a `BitStore` specifier. It cannot be invoked with a `BitStore`
specifier but no `BitOrder` specifier, due to overlap in how those tokens are
matched by the macro system.

Like `vec!`, `bitvec!` supports bit lists `[0, 1, …]` and repetition markers
`[1; n]`.

# Examples

```rust
use bitvec::prelude::*;

bitvec![Msb0, u8; 0, 1];
bitvec![Lsb0, u8; 0, 1,];
bitvec![Msb0; 0, 1];
bitvec![Lsb0; 0, 1,];
bitvec![0, 1];
bitvec![0, 1,];
bitvec![Msb0, u8; 1; 5];
bitvec![Lsb0; 0; 5];
bitvec![1; 5];
```
**/
#[cfg(feature = "alloc")]
#[macro_export]
macro_rules! bitvec {
	//  First, capture the repetition syntax, as it is permitted to use runtime
	//  values for the repetition count.
	($order:ty, $store:ident; $val:expr; $rep:expr) => {
		$crate::vec::BitVec::<$order, $store>::repeat($val != 0, $rep)
	};
	($order:ty; $val:expr; $rep:expr) => {
		$crate::bitvec!($order, usize; $val; $rep)
	};
	($val:expr; $rep:expr) => {
		$crate::bitvec!($crate::order::Local, usize; $val; $rep)
	};

	//  Delegate all others to the `bits!` macro.
	($($arg:tt)*) => {{
		let bits: &'static $crate::slice::BitSlice::<_, _> = $crate::bits!($($arg)*);
		$crate::vec::BitVec::from_bitslice(bits)
	}};
}

/** Construct a `BitBox` out of a literal array in source code, like `bitvec!`.

This has exactly the same syntax as [`bitvec!`], and in fact is a thin wrapper
around `bitvec!` that calls `.into_boxed_slice()` on the produced `BitVec` to
freeze it.

[`bitvec!`]: #macro.bitvec
**/
#[cfg(feature = "alloc")]
#[macro_export]
macro_rules! bitbox {
	($($arg:tt)*) => {
		$crate::bitvec![$($arg)*].into_boxed_bitslice()
	};
}

#[cfg(test)]
mod tests {
	#[allow(unused_imports)]
	use crate::order::{
		Msb0,
		Lsb0,
	};

	#[test]
	#[cfg(feature = "alloc")]
	fn compile_bits_macros() {
		bits![0, 1];
		bits![Msb0; 0, 1];
		bits![Lsb0; 0, 1];
		bits![Msb0, u8; 0, 1];
		bits![Lsb0, u8; 0, 1];
		bits![Msb0, u16; 0, 1];
		bits![Lsb0, u16; 0, 1];
		bits![Msb0, u32; 0, 1];
		bits![Lsb0, u32; 0, 1];

		#[cfg(target_pointer_width = "64")] {

		bits![Msb0, u64; 0, 1];
		bits![Lsb0, u64; 0, 1];

		}

		bits![1; 70];
		bits![Msb0; 0; 70];
		bits![Lsb0; 1; 70];
		bits![Msb0, u8; 0; 70];
		bits![Lsb0, u8; 1; 70];
		bits![Msb0, u16; 0; 70];
		bits![Lsb0, u16; 1; 70];
		bits![Msb0, u32; 0; 70];
		bits![Lsb0, u32; 1; 70];

		#[cfg(target_pointer_width = "64")] {

		bits![Msb0, u64; 0; 70];
		bits![Lsb0, u64; 1; 70];

		}
	}

	#[test]
	#[cfg(feature = "alloc")]
	fn compile_bitvec_macros() {
		bitvec![0, 1];
		bitvec![Msb0; 0, 1];
		bitvec![Lsb0; 0, 1];
		bitvec![Msb0, u8; 0, 1];
		bitvec![Lsb0, u8; 0, 1];
		bitvec![Msb0, u16; 0, 1];
		bitvec![Lsb0, u16; 0, 1];
		bitvec![Msb0, u32; 0, 1];
		bitvec![Lsb0, u32; 0, 1];

		#[cfg(target_pointer_width = "64")] {

		bitvec![Msb0, u64; 0, 1];
		bitvec![Lsb0, u64; 0, 1];

		}

		bitvec![1; 70];
		bitvec![Msb0; 0; 70];
		bitvec![Lsb0; 1; 70];
		bitvec![Msb0, u8; 0; 70];
		bitvec![Lsb0, u8; 1; 70];
		bitvec![Msb0, u16; 0; 70];
		bitvec![Lsb0, u16; 1; 70];
		bitvec![Msb0, u32; 0; 70];
		bitvec![Lsb0, u32; 1; 70];

		#[cfg(target_pointer_width = "64")] {

		bitvec![Msb0, u64; 0; 70];
		bitvec![Lsb0, u64; 1; 70];

		}
	}

	#[test]
	#[cfg(feature = "alloc")]
	fn compile_bitbox_macros() {
		bitbox![0, 1];
		bitbox![Msb0; 0, 1];
		bitbox![Lsb0; 0, 1];
		bitbox![Msb0, u8; 0, 1];
		bitbox![Lsb0, u8; 0, 1];
		bitbox![Msb0, u16; 0, 1];
		bitbox![Lsb0, u16; 0, 1];
		bitbox![Msb0, u32; 0, 1];
		bitbox![Lsb0, u32; 0, 1];

		#[cfg(target_pointer_width = "64")] {

		bitbox![Msb0, u64; 0, 1];
		bitbox![Lsb0, u64; 0, 1];

		}

		bitbox![1; 70];
		bitbox![Msb0; 0; 70];
		bitbox![Lsb0; 1; 70];
		bitbox![Msb0, u8; 0; 70];
		bitbox![Lsb0, u8; 1; 70];
		bitbox![Msb0, u16; 0; 70];
		bitbox![Lsb0, u16; 1; 70];
		bitbox![Msb0, u32; 0; 70];
		bitbox![Lsb0, u32; 1; 70];

		#[cfg(target_pointer_width = "64")] {

		bitbox![Msb0, u64; 0; 70];
		bitbox![Lsb0, u64; 1; 70];

		}
	}
}