1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// Copyright 2017 6WIND S.A. <[email protected]>
//
// Licensed under the Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0> or
// the MIT license <http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Functions in this module are used to handle eBPF programs with a higher level representation,
//! for example to disassemble the code into a human-readable format.

use crate::ebpf;

#[inline]
fn alu_imm_str(name: &str, insn: &ebpf::Insn) -> String {
    format!("{} r{}, {:#x}", name, insn.dst, insn.imm)
}

#[inline]
fn alu_reg_str(name: &str, insn: &ebpf::Insn) -> String {
    format!("{} r{}, r{}", name, insn.dst, insn.src)
}

#[inline]
fn byteswap_str(name: &str, insn: &ebpf::Insn) -> String {
    match insn.imm {
        16 | 32 | 64 => {}
        _ => println!(
            "[Disassembler] Warning: Invalid offset value for {} insn",
            name
        ),
    }
    format!("{}{} r{}", name, insn.imm, insn.dst)
}

#[inline]
fn ld_st_imm_str(name: &str, insn: &ebpf::Insn) -> String {
    format!("{} [r{}+{:#x}], {:#x}", name, insn.dst, insn.off, insn.imm)
}

#[inline]
fn ld_reg_str(name: &str, insn: &ebpf::Insn) -> String {
    format!("{} r{}, [r{}+{:#x}]", name, insn.dst, insn.src, insn.off)
}

#[inline]
fn st_reg_str(name: &str, insn: &ebpf::Insn) -> String {
    format!("{} [r{}+{:#x}], r{}", name, insn.dst, insn.off, insn.src)
}

#[inline]
fn ldabs_str(name: &str, insn: &ebpf::Insn) -> String {
    format!("{} {:#x}", name, insn.imm)
}

#[inline]
fn ldind_str(name: &str, insn: &ebpf::Insn) -> String {
    format!("{} r{}, {:#x}", name, insn.src, insn.imm)
}

#[inline]
fn jmp_imm_str(name: &str, insn: &ebpf::Insn) -> String {
    format!("{} r{}, {:#x}, {:+#x}", name, insn.dst, insn.imm, insn.off)
}

#[inline]
fn jmp_reg_str(name: &str, insn: &ebpf::Insn) -> String {
    format!("{} r{}, r{}, {:+#x}", name, insn.dst, insn.src, insn.off)
}

/// High-level representation of an eBPF instruction.
///
/// In addition to standard operation code and various operand, this struct has the following
/// properties:
///
/// * It stores a name, corresponding to a mnemonic for the operation code.
/// * It also stores a description, which is a mnemonic for the full instruction, using the actual
///   values of the relevant operands, and that can be used for disassembling the eBPF program for
///   example.
/// * Immediate values are stored in an `i64` instead of a traditional i32, in order to merge the
///   two parts of (otherwise double-length) `LD_DW_IMM` instructions.
///
/// See <https://www.kernel.org/doc/Documentation/networking/filter.txt> for the Linux kernel
/// documentation about eBPF, or <https://github.com/iovisor/bpf-docs/blob/master/eBPF.md> for a
/// more concise version.
#[derive(Debug, PartialEq)]
pub struct HlInsn {
    /// Instruction pointer.
    pub ptr: usize,
    /// Operation code.
    pub opc: u8,
    /// Name (mnemonic). This name is not canon.
    pub name: String,
    /// Description of the instruction. This is not canon.
    pub desc: String,
    /// Destination register operand.
    pub dst: u8,
    /// Source register operand.
    pub src: u8,
    /// Offset operand.
    pub off: i16,
    /// Immediate value operand. For `LD_DW_IMM` instructions, contains the whole value merged from
    /// the two 8-bytes parts of the instruction.
    pub imm: i64,
}

/// Return a vector of `struct HlInsn` built from an eBPF program.
///
/// This is made public to provide a way to manipulate a program as a vector of instructions, in a
/// high-level format, for example for dumping the program instruction after instruction with a
/// custom format.
///
/// Note that the two parts of `LD_DW_IMM` instructions (that have the size of two standard
/// instructions) are considered as making a single immediate value. As a consequence, the number
/// of instructions stored in the vector may not be equal to the size in bytes of the program
/// divided by the length of an instructions.
///
/// To do so, the immediate value operand is stored as an `i64` instead as an i32, so be careful
/// when you use it (see example `examples/to_json.rs`).
///
/// This is to oppose to `ebpf::to_insn_vec()` function, that treats instructions on a low-level
/// ground and do not merge the parts of `LD_DW_IMM`. Also, the version in `ebpf` module does not
/// use names or descriptions when storing the instructions.
///
/// # Examples
///
/// ```
/// use solana_rbpf::disassembler;
///
/// let prog = &[
///     0x18, 0x00, 0x00, 0x00, 0x88, 0x77, 0x66, 0x55,
///     0x00, 0x00, 0x00, 0x00, 0x44, 0x33, 0x22, 0x11,
///     0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
/// ];
///
/// let v = disassembler::to_insn_vec(prog);
/// assert_eq!(v, vec![
///     disassembler::HlInsn {
///         ptr: 0,
///         opc: 0x18,
///         name: "lddw".to_string(),
///         desc: "lddw r0, 0x1122334455667788".to_string(),
///         dst: 0,
///         src: 0,
///         off: 0,
///         imm: 0x1122334455667788
///     },
///     disassembler::HlInsn {
///         ptr: 2,
///         opc: 0x95,
///         name: "exit".to_string(),
///         desc: "exit".to_string(),
///         dst: 0,
///         src: 0,
///         off: 0,
///         imm: 0
///     },
/// ]);
/// ```
#[rustfmt::skip]
pub fn to_insn_vec(prog: &[u8]) -> Vec<HlInsn> {
    debug_assert!(prog.len() % ebpf::INSN_SIZE == 0, "eBPF program length must be a multiple of {:?} octets is {:?}", ebpf::INSN_SIZE, prog.len());

    if prog.is_empty() {
        return vec![];
    }

    let mut res = vec![];
    let mut insn_ptr: usize = 0;

    while insn_ptr * ebpf::INSN_SIZE < prog.len() {
        let insn = ebpf::get_insn(prog, insn_ptr);
        let ptr = insn_ptr;

        let name;
        let desc;
        let mut imm = insn.imm as i64;
        match insn.opc {

            // BPF_LD class
            ebpf::LD_ABS_B   => { name = "ldabsb";  desc = ldabs_str(name, &insn); },
            ebpf::LD_ABS_H   => { name = "ldabsh";  desc = ldabs_str(name, &insn); },
            ebpf::LD_ABS_W   => { name = "ldabsw";  desc = ldabs_str(name, &insn); },
            ebpf::LD_ABS_DW  => { name = "ldabsdw"; desc = ldabs_str(name, &insn); },
            ebpf::LD_IND_B   => { name = "ldindb";  desc = ldind_str(name, &insn); },
            ebpf::LD_IND_H   => { name = "ldindh";  desc = ldind_str(name, &insn); },
            ebpf::LD_IND_W   => { name = "ldindw";  desc = ldind_str(name, &insn); },
            ebpf::LD_IND_DW  => { name = "ldinddw"; desc = ldind_str(name, &insn); },

            ebpf::LD_DW_IMM  => {
                insn_ptr += 1;
                let next_insn = ebpf::get_insn(prog, insn_ptr);
                imm = ((insn.imm as u32) as u64 + ((next_insn.imm as u64) << 32)) as i64;
                name = "lddw"; desc = format!("{} r{:}, {:#x}", name, insn.dst, imm);
            },

            // BPF_LDX class
            ebpf::LD_B_REG   => { name = "ldxb";  desc = ld_reg_str(name, &insn); },
            ebpf::LD_H_REG   => { name = "ldxh";  desc = ld_reg_str(name, &insn); },
            ebpf::LD_W_REG   => { name = "ldxw";  desc = ld_reg_str(name, &insn); },
            ebpf::LD_DW_REG  => { name = "ldxdw"; desc = ld_reg_str(name, &insn); },

            // BPF_ST class
            ebpf::ST_B_IMM   => { name = "stb";  desc = ld_st_imm_str(name, &insn); },
            ebpf::ST_H_IMM   => { name = "sth";  desc = ld_st_imm_str(name, &insn); },
            ebpf::ST_W_IMM   => { name = "stw";  desc = ld_st_imm_str(name, &insn); },
            ebpf::ST_DW_IMM  => { name = "stdw"; desc = ld_st_imm_str(name, &insn); },

            // BPF_STX class
            ebpf::ST_B_REG   => { name = "stxb";      desc = st_reg_str(name, &insn); },
            ebpf::ST_H_REG   => { name = "stxh";      desc = st_reg_str(name, &insn); },
            ebpf::ST_W_REG   => { name = "stxw";      desc = st_reg_str(name, &insn); },
            ebpf::ST_DW_REG  => { name = "stxdw";     desc = st_reg_str(name, &insn); },
            ebpf::ST_W_XADD  => { name = "stxxaddw";  desc = st_reg_str(name, &insn); },
            ebpf::ST_DW_XADD => { name = "stxxadddw"; desc = st_reg_str(name, &insn); },

            // BPF_ALU class
            ebpf::ADD32_IMM  => { name = "add32";  desc = alu_imm_str(name, &insn);  },
            ebpf::ADD32_REG  => { name = "add32";  desc = alu_reg_str(name, &insn);  },
            ebpf::SUB32_IMM  => { name = "sub32";  desc = alu_imm_str(name, &insn);  },
            ebpf::SUB32_REG  => { name = "sub32";  desc = alu_reg_str(name, &insn);  },
            ebpf::MUL32_IMM  => { name = "mul32";  desc = alu_imm_str(name, &insn);  },
            ebpf::MUL32_REG  => { name = "mul32";  desc = alu_reg_str(name, &insn);  },
            ebpf::DIV32_IMM  => { name = "div32";  desc = alu_imm_str(name, &insn);  },
            ebpf::DIV32_REG  => { name = "div32";  desc = alu_reg_str(name, &insn);  },
            ebpf::OR32_IMM   => { name = "or32";   desc = alu_imm_str(name, &insn);  },
            ebpf::OR32_REG   => { name = "or32";   desc = alu_reg_str(name, &insn);  },
            ebpf::AND32_IMM  => { name = "and32";  desc = alu_imm_str(name, &insn);  },
            ebpf::AND32_REG  => { name = "and32";  desc = alu_reg_str(name, &insn);  },
            ebpf::LSH32_IMM  => { name = "lsh32";  desc = alu_imm_str(name, &insn);  },
            ebpf::LSH32_REG  => { name = "lsh32";  desc = alu_reg_str(name, &insn);  },
            ebpf::RSH32_IMM  => { name = "rsh32";  desc = alu_imm_str(name, &insn);  },
            ebpf::RSH32_REG  => { name = "rsh32";  desc = alu_reg_str(name, &insn);  },
            ebpf::NEG32      => { name = "neg32";  desc = format!("{} r{:}", name, insn.dst); },
            ebpf::MOD32_IMM  => { name = "mod32";  desc = alu_imm_str(name, &insn);  },
            ebpf::MOD32_REG  => { name = "mod32";  desc = alu_reg_str(name, &insn);  },
            ebpf::XOR32_IMM  => { name = "xor32";  desc = alu_imm_str(name, &insn);  },
            ebpf::XOR32_REG  => { name = "xor32";  desc = alu_reg_str(name, &insn);  },
            ebpf::MOV32_IMM  => { name = "mov32";  desc = alu_imm_str(name, &insn);  },
            ebpf::MOV32_REG  => { name = "mov32";  desc = alu_reg_str(name, &insn);  },
            ebpf::ARSH32_IMM => { name = "arsh32"; desc = alu_imm_str(name, &insn);  },
            ebpf::ARSH32_REG => { name = "arsh32"; desc = alu_reg_str(name, &insn);  },
            ebpf::LE         => { name = "le";     desc = byteswap_str(name, &insn); },
            ebpf::BE         => { name = "be";     desc = byteswap_str(name, &insn); },

            // BPF_ALU64 class
            ebpf::ADD64_IMM  => { name = "add64";  desc = alu_imm_str(name, &insn); },
            ebpf::ADD64_REG  => { name = "add64";  desc = alu_reg_str(name, &insn); },
            ebpf::SUB64_IMM  => { name = "sub64";  desc = alu_imm_str(name, &insn); },
            ebpf::SUB64_REG  => { name = "sub64";  desc = alu_reg_str(name, &insn); },
            ebpf::MUL64_IMM  => { name = "mul64";  desc = alu_imm_str(name, &insn); },
            ebpf::MUL64_REG  => { name = "mul64";  desc = alu_reg_str(name, &insn); },
            ebpf::DIV64_IMM  => { name = "div64";  desc = alu_imm_str(name, &insn); },
            ebpf::DIV64_REG  => { name = "div64";  desc = alu_reg_str(name, &insn); },
            ebpf::OR64_IMM   => { name = "or64";   desc = alu_imm_str(name, &insn); },
            ebpf::OR64_REG   => { name = "or64";   desc = alu_reg_str(name, &insn); },
            ebpf::AND64_IMM  => { name = "and64";  desc = alu_imm_str(name, &insn); },
            ebpf::AND64_REG  => { name = "and64";  desc = alu_reg_str(name, &insn); },
            ebpf::LSH64_IMM  => { name = "lsh64";  desc = alu_imm_str(name, &insn); },
            ebpf::LSH64_REG  => { name = "lsh64";  desc = alu_reg_str(name, &insn); },
            ebpf::RSH64_IMM  => { name = "rsh64";  desc = alu_imm_str(name, &insn); },
            ebpf::RSH64_REG  => { name = "rsh64";  desc = alu_reg_str(name, &insn); },
            ebpf::NEG64      => { name = "neg64";  desc = format!("{} r{:}", name, insn.dst); },
            ebpf::MOD64_IMM  => { name = "mod64";  desc = alu_imm_str(name, &insn); },
            ebpf::MOD64_REG  => { name = "mod64";  desc = alu_reg_str(name, &insn); },
            ebpf::XOR64_IMM  => { name = "xor64";  desc = alu_imm_str(name, &insn); },
            ebpf::XOR64_REG  => { name = "xor64";  desc = alu_reg_str(name, &insn); },
            ebpf::MOV64_IMM  => { name = "mov64";  desc = alu_imm_str(name, &insn); },
            ebpf::MOV64_REG  => { name = "mov64";  desc = alu_reg_str(name, &insn); },
            ebpf::ARSH64_IMM => { name = "arsh64"; desc = alu_imm_str(name, &insn); },
            ebpf::ARSH64_REG => { name = "arsh64"; desc = alu_reg_str(name, &insn); },

            // BPF_JMP class
            ebpf::JA         => { name = "ja";   desc = format!("{} {:+#x}", name, insn.off); },
            ebpf::JEQ_IMM    => { name = "jeq";  desc = jmp_imm_str(name, &insn); },
            ebpf::JEQ_REG    => { name = "jeq";  desc = jmp_reg_str(name, &insn); },
            ebpf::JGT_IMM    => { name = "jgt";  desc = jmp_imm_str(name, &insn); },
            ebpf::JGT_REG    => { name = "jgt";  desc = jmp_reg_str(name, &insn); },
            ebpf::JGE_IMM    => { name = "jge";  desc = jmp_imm_str(name, &insn); },
            ebpf::JGE_REG    => { name = "jge";  desc = jmp_reg_str(name, &insn); },
            ebpf::JLT_IMM    => { name = "jlt";  desc = jmp_imm_str(name, &insn); },
            ebpf::JLT_REG    => { name = "jlt";  desc = jmp_reg_str(name, &insn); },
            ebpf::JLE_IMM    => { name = "jle";  desc = jmp_imm_str(name, &insn); },
            ebpf::JLE_REG    => { name = "jle";  desc = jmp_reg_str(name, &insn); },
            ebpf::JSET_IMM   => { name = "jset"; desc = jmp_imm_str(name, &insn); },
            ebpf::JSET_REG   => { name = "jset"; desc = jmp_reg_str(name, &insn); },
            ebpf::JNE_IMM    => { name = "jne";  desc = jmp_imm_str(name, &insn); },
            ebpf::JNE_REG    => { name = "jne";  desc = jmp_reg_str(name, &insn); },
            ebpf::JSGT_IMM   => { name = "jsgt"; desc = jmp_imm_str(name, &insn); },
            ebpf::JSGT_REG   => { name = "jsgt"; desc = jmp_reg_str(name, &insn); },
            ebpf::JSGE_IMM   => { name = "jsge"; desc = jmp_imm_str(name, &insn); },
            ebpf::JSGE_REG   => { name = "jsge"; desc = jmp_reg_str(name, &insn); },
            ebpf::JSLT_IMM   => { name = "jslt"; desc = jmp_imm_str(name, &insn); },
            ebpf::JSLT_REG   => { name = "jslt"; desc = jmp_reg_str(name, &insn); },
            ebpf::JSLE_IMM   => { name = "jsle"; desc = jmp_imm_str(name, &insn); },
            ebpf::JSLE_REG   => { name = "jsle"; desc = jmp_reg_str(name, &insn); },
            ebpf::CALL_IMM   => { name = "call"; desc = format!("{} {:#x}", name, insn.imm); },
            ebpf::CALL_REG   => { name = "callx"; desc = format!("{} {:#x}", name, insn.imm); },
            ebpf::EXIT       => { name = "exit"; desc = name.to_string(); },

            _                => {
                name = "unknown"; desc = format!("{} opcode={:#x}", name, insn.opc);
            },
        };

        res.push(HlInsn {
            ptr,
            opc:  insn.opc,
            name: name.to_string(),
            desc,
            dst:  insn.dst,
            src:  insn.src,
            off:  insn.off,
            imm,
        });

        insn_ptr += 1;
    };
    res
}

/// Disassemble an eBPF program into human-readable instructions and prints it to standard output.
///
/// The program is not checked for errors or inconsistencies.
///
/// # Examples
///
/// ```
/// use solana_rbpf::disassembler;
/// let prog = &[
///     0x07, 0x01, 0x00, 0x00, 0x05, 0x06, 0x00, 0x00,
///     0xb7, 0x02, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00,
///     0xbf, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
///     0xdc, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
///     0x87, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
///     0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
/// ];
/// disassembler::disassemble(prog);
/// # // "\nadd64 r1, 0x605\nmov64 r2, 0x32\nmov64 r1, r0\nbe16 r0\nneg64 r2\nexit"
/// ```
///
/// This will produce the following output:
///
/// ```test
/// add64 r1, 0x605
/// mov64 r2, 0x32
/// mov64 r1, r0
/// be16 r0
/// neg64 r2
/// exit
/// ```
pub fn disassemble(prog: &[u8]) {
    for insn in to_insn_vec(prog).iter() {
        println!("{:5} {}", insn.ptr, insn.desc);
    }
}