1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/*! General trait implementations for `BitSlice`.

The operator traits are defined in the `ops` module.
!*/

use crate::{
	access::BitAccess,
	order::BitOrder,
	slice::BitSlice,
	store::BitStore,
};

use core::{
	cmp::Ordering,
	fmt::{
		self,
		Binary,
		Debug,
		Display,
		Formatter,
		LowerHex,
		Octal,
		UpperHex,
	},
	hash::{
		Hash,
		Hasher,
	},
	hint::unreachable_unchecked,
	str,
};

use either::Either;

#[cfg(feature = "alloc")]
use {
	crate::vec::BitVec,
	alloc::borrow::ToOwned,
};

#[cfg(feature = "alloc")]
impl<O, T> ToOwned for BitSlice<O, T>
where O: BitOrder, T: BitStore {
	type Owned = BitVec<O, T>;

	fn to_owned(&self) -> Self::Owned {
		BitVec::from_bitslice(self)
	}
}

impl<O, T> Eq for BitSlice<O, T>
where O: BitOrder, T: BitStore {}

impl<O, T> Ord for BitSlice<O, T>
where O: BitOrder, T: BitStore {
	fn cmp(&self, rhs: &Self) -> Ordering {
		self.partial_cmp(rhs)
			//  `BitSlice` has a total ordering, and never returns `None`.
			.unwrap_or_else(|| unsafe { unreachable_unchecked() })
	}
}

/** Tests if two `BitSlice`s are semantically — not bitwise — equal.

It is valid to compare two slices of different ordering or element types.

The equality condition requires that they have the same number of total bits and
that each pair of bits in semantic order are identical.
**/
impl<A, B, C, D> PartialEq<BitSlice<C, D>> for BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	/// Performas a comparison by `==`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let lsrc = [8u8, 16, 32, 0];
	/// let rsrc = 0x10_08_04_00u32;
	/// let lbits = lsrc.bits::<Lsb0>();
	/// let rbits = rsrc.bits::<Msb0>();
	///
	/// assert_eq!(lbits, rbits);
	/// ```
	fn eq(&self, rhs: &BitSlice<C, D>) -> bool {
		if self.len() != rhs.len() {
			return false;
		}
		self.iter().zip(rhs.iter()).all(|(l, r)| l == r)
	}
}

impl<A, B, C, D> PartialEq<BitSlice<C, D>> for &BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn eq(&self, rhs: &BitSlice<C, D>) -> bool {
		(*self).eq(rhs)
	}
}

impl<A, B, C, D> PartialEq<&BitSlice<C, D>> for BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn eq(&self, rhs: &&BitSlice<C, D>) -> bool {
		self.eq(*rhs)
	}
}

/** Compares two `BitSlice`s by semantic — not bitwise — ordering.

The comparison sorts by testing each index for one slice to have a set bit where
the other has an unset bit. If the slices are different, the slice with the set
bit sorts greater than the slice with the unset bit.

If one of the slices is exhausted before they differ, the longer slice is
greater.
**/
impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	/// Performs a comparison by `<` or `>`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let src = 0x45u8;
	/// let bits = src.bits::<Msb0>();
	/// let a = &bits[0 .. 3]; // 010
	/// let b = &bits[0 .. 4]; // 0100
	/// let c = &bits[0 .. 5]; // 01000
	/// let d = &bits[4 .. 8]; // 0101
	///
	/// assert!(a < b);
	/// assert!(b < c);
	/// assert!(c < d);
	/// ```
	fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering> {
		for (l, r) in self.iter().zip(rhs.iter()) {
			match (l, r) {
				(true, false) => return Some(Ordering::Greater),
				(false, true) => return Some(Ordering::Less),
				_ => continue,
			}
		}
		self.len().partial_cmp(&rhs.len())
	}
}

impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for &BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering> {
		(*self).partial_cmp(rhs)
	}
}

impl<A, B, C, D> PartialOrd<&BitSlice<C, D>> for BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn partial_cmp(&self, rhs: &&BitSlice<C, D>) -> Option<Ordering> {
		self.partial_cmp(*rhs)
	}
}

/// Provides write access to all fully-owned elements in the underlying memory
/// buffer. This excludes the edge elements if they are partially-owned.
impl<O, T> AsMut<[T]> for BitSlice<O, T>
where O: BitOrder, T: BitStore {
	fn as_mut(&mut self) -> &mut [T] {
		self.as_mut_slice()
	}
}

/// Provides read-only access to all fully-owned elements in the underlying
/// memory buffer. This excludes the edge elements if they are partially-owned.
impl<O, T> AsRef<[T]> for BitSlice<O, T>
where O: BitOrder, T: BitStore {
	fn as_ref(&self) -> &[T] {
		self.as_slice()
	}
}

impl<'a, O, T> From<&'a T> for &'a BitSlice<O, T>
where O: BitOrder, T: 'a + BitStore {
	fn from(src: &'a T) -> Self {
		BitSlice::<O, T>::from_element(src)
	}
}

impl<'a, O, T> From<&'a [T]> for &'a BitSlice<O, T>
where O: BitOrder, T: 'a + BitStore {
	fn from(src: &'a [T]) -> Self {
		BitSlice::<O, T>::from_slice(src)
	}
}

impl<'a, O, T> From<&'a mut T> for &'a mut BitSlice<O, T>
where O: BitOrder, T: 'a + BitStore {
	fn from(src: &'a mut T) -> Self {
		BitSlice::<O, T>::from_element_mut(src)
	}
}

impl<'a, O, T> From<&'a mut [T]> for &'a mut BitSlice<O, T>
where O: BitOrder, T: 'a + BitStore {
	fn from(src: &'a mut [T]) -> Self {
		BitSlice::<O, T>::from_slice_mut(src)
	}
}

impl<'a, O, T> Default for &'a BitSlice<O, T>
where O: BitOrder, T: 'a + BitStore {
	fn default() -> Self {
		BitSlice::empty()
	}
}

impl<'a, O, T> Default for &'a mut BitSlice<O, T>
where O: BitOrder, T: 'a + BitStore {
	fn default() -> Self {
		BitSlice::empty_mut()
	}
}

macro_rules! fmt {
	( $trait:ident, $base:expr, $pfx:expr, $blksz:expr ) => {
/** Write out the contents of a `BitSlice` as a numeric format.

These implementations render the bits of memory governed by a `BitSlice` as one
of the three numeric bases the Rust format system supports:

- `Binary` renders each bit individually as `0` or `1`,
- `Octal` renders clusters of three bits as the numbers `0` through `7`,
- `Hex` renders clusters of four bits as the numbers `[0-9A-F]`.

The formatters produce a word for each `T` element of memory. The chunked
formats (octal and hexadecimal) operate somewhat peculiarly: they show the
semantic value of the memory as interpreted by the `BitOrder` type parameter’s
implementation, and not the raw value of the memory as you might observe with a
debugger.

Specifically, the chunked formats read between zero and three (octal) or four
(hexadecimal) bits in `BitOrder` order out of a memory element, store those bits
in first-high/last-low order, and then interpret that sequence as a number in
their respective bases. This means that, for instance, the byte `3` (bit pattern
`0b0000_0011`), read in `Lsb0` order, will produce the numerals `"600"`
(`110 000 00`) in octal, and `"C0"` (`1100 0000`) in hexadecimal.

If the memory element is exhausted before a chunk is filled with three or four
bits, then the number produced will have a lower value. The byte `0xFFu8` will
always produce the octal numeral `"773"` (`111 111 11`).

The decision to chunk numeral words by memory element, even though it breaks the
octal chunking pattern was made so that the rendered text will still show memory
boundaries for easier inspection.
**/
impl<O, T> $trait for BitSlice<O, T>
where O: BitOrder, T: BitStore {
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		let start = if fmt.alternate() { 0 } else { 2 };
		let mut dbg = fmt.debug_list();
		let mut w: [u8; (64 / $blksz) + 2] = [b'0'; (64 / $blksz) + 2];
		w[1] = $pfx;
		let mut writer = |bits: &Self| {
			let mut end = 2;
			for (idx, chunk) in bits.chunks($blksz).enumerate() {
				let mut val = 0u8;
				for bit in chunk {
					val <<= 1;
					val |= *bit as u8;
				}
				w[2 + idx] = match val {
					v @ 0 ..= 9 => b'0' + v,
					v @ 10 ..= 16 => $base + (v - 10),
					_ => unsafe { unreachable_unchecked() },
				};
				end += 1;
			}
			dbg.entry(&RenderPart(unsafe {
				str::from_utf8_unchecked(&w[start .. end])
			}));
		};
		match self.bitptr().domain().splat() {
			Either::Right(_) => {
				writer(self);
			},
			Either::Left((h, b, t)) => {
				if let Some((h, head)) = h {
					writer(&Self::from_element(&head.load())[*h as usize ..]);
				}
				if let Some(body) = b {
					for elt in body.iter().map(BitAccess::load) {
						writer(Self::from_element(&elt));
					}
				}
				if let Some((tail, t)) = t {
					writer(&Self::from_element(&tail.load())[.. *t as usize]);
				}
			},
		}
		dbg.finish()
	}
}
	};
}

/** Prints the `BitSlice` for debugging.

The output is of the form `BitSlice<O, T> [ELT, *]` where `<O, T>` is the order
and element type, with square brackets on each end of the bits and all the
elements of the array printed in binary. The printout is always in semantic
order, and may not reflect the underlying buffer. To see the underlying buffer,
use `.as_total_slice()`.

The alternate character `{:#?}` prints each element on its own line, rather than
having all elements on the same line.
**/
impl<O, T> Debug for BitSlice<O, T>
where O: BitOrder, T: BitStore {
	/// Renders the `BitSlice` type header and contents for debug.
	///
	/// # Examples
	///
	/// ```rust
	/// # #[cfg(feature = "alloc")] {
	/// use bitvec::prelude::*;
	///
	/// let src = [0b0101_0000_1111_0101u16, 0b00000000_0000_0010];
	/// let bits = &src.bits::<Lsb0>()[.. 18];
	/// assert_eq!(
    ///     "BitSlice<Lsb0, u16> [1010111100001010, 01]",
	///     &format!("{:?}", bits),
	/// );
	/// # }
	/// ```
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		fmt.write_str("BitSlice<")?;
		fmt.write_str(O::TYPENAME)?;
		fmt.write_str(", ")?;
		fmt.write_str(T::TYPENAME)?;
		fmt.write_str("> ")?;
		Binary::fmt(self, fmt)
	}
}

/** Prints the `BitSlice` for displaying.

This prints each element in turn, formatted in binary in semantic order (so the
first bit seen is printed first and the last bit seen is printed last). Each
element of storage is separated by a space for ease of reading.

The alternate character `{:#}` prints each element on its own line.

To see the in-memory representation, use `.as_total_slice()` to get access to
the raw elements and print that slice instead.
**/
impl<O, T> Display for BitSlice<O, T>
where O: BitOrder, T: BitStore {
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Binary::fmt(self, fmt)
	}
}

fmt![Binary, b'0', b'b', 1];
fmt![Octal, b'0', b'o', 3];
fmt![LowerHex, b'a', b'x', 4];
fmt![UpperHex, b'A', b'x', 4];

/** Wrapper for inserting pre-rendered text into a formatting stream.

The numeric formatters write text into a buffer, which a formatter then reads
directly. The formatter only takes `&dyn Debug` objects, so this translates the
text buffer into a compatible trait object.
**/
struct RenderPart<'a>(&'a str);
impl Debug for RenderPart<'_> {
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		fmt.write_str(&self.0)
	}
}

/// Writes the contents of the `BitSlice`, in semantic bit order, into a hasher.
impl<O, T> Hash for BitSlice<O, T>
where O: BitOrder, T: BitStore {
	fn hash<H>(&self, hasher: &mut H)
	where H: Hasher {
		for bit in self {
			hasher.write_u8(*bit as u8);
		}
	}
}

/** `BitSlice` is safe to move across thread boundaries, when atomic operations
are enabled.

Consider this (contrived) example:

```rust
# #[cfg(feature = "std")] {
use bitvec::prelude::*;
use std::thread;

static mut SRC: u8 = 0;
# {
let bits = unsafe { SRC.bits_mut::<Msb0>() };
let (l, r) = bits.split_at_mut(4);

let a = thread::spawn(move || l.set(2, true));
let b = thread::spawn(move || r.set(2, true));
a.join();
b.join();
# }

println!("{:02X}", unsafe { SRC });
# }
```

Without atomic operations, this is logically a data race. With atomic
operations, each read/modify/write cycle is guaranteed to exclude other threads
from observing the location until the writeback completes.
**/
#[cfg(feature = "atomic")]
unsafe impl<O, T> Send for BitSlice<O, T>
where O: BitOrder, T: BitStore {}

/** Reading across threads still has synchronization concerns if one thread can
mutate, so read access across threads requires atomicity in order to ensure that
write operations from one thread to an element conclude before another thread
can read from the element, even if the two `BitSlice`s do not collide.
**/
#[cfg(feature = "atomic")]
unsafe impl<O, T> Sync for BitSlice<O, T>
where O: BitOrder, T: BitStore {}

#[cfg(all(test, feature = "alloc"))]
mod tests {
	use crate::{
		order::Msb0,
		slice::AsBits,
	};

	//  The `format!` macro is not in the `alloc` prelude.
	#[cfg(not(feature = "std"))]
	use alloc::format;

	#[test]
	fn binary() {
		let data = [0u8, 0x0F, !0];
		let bits = data.bits::<Msb0>();

		assert_eq!(format!("{:b}", &bits[.. 0]), "[]");
		assert_eq!(format!("{:#b}", &bits[.. 0]), "[]");

		assert_eq!(format!("{:b}", &bits[9 .. 15]), "[000111]");
		assert_eq!(format!("{:#b}", &bits[9 .. 15]),
"[
    0b000111,
]");

		assert_eq!(format!("{:b}", &bits[4 .. 20]), "[0000, 00001111, 1111]");
		assert_eq!(format!("{:#b}", &bits[4 .. 20]),
"[
    0b0000,
    0b00001111,
    0b1111,
]");

		assert_eq!(format!("{:b}", &bits[4 ..]), "[0000, 00001111, 11111111]");
		assert_eq!(format!("{:#b}", &bits[4 ..]),
"[
    0b0000,
    0b00001111,
    0b11111111,
]");

		assert_eq!(format!("{:b}", &bits[.. 20]), "[00000000, 00001111, 1111]");
		assert_eq!(format!("{:#b}", &bits[.. 20]),
"[
    0b00000000,
    0b00001111,
    0b1111,
]");

		assert_eq!(format!("{:b}", bits), "[00000000, 00001111, 11111111]");
		assert_eq!(format!("{:#b}", bits),
"[
    0b00000000,
    0b00001111,
    0b11111111,
]");
	}

	#[test]
	fn octal() {
		let data = [0u8, 0x0F, !0];
		let bits = data.bits::<Msb0>();

		assert_eq!(format!("{:o}", &bits[.. 0]), "[]");
		assert_eq!(format!("{:#o}", &bits[.. 0]), "[]");

		assert_eq!(format!("{:o}", &bits[9 .. 15]), "[07]");
		assert_eq!(format!("{:#o}", &bits[9 .. 15]),
"[
    0o07,
]");

		assert_eq!(format!("{:o}", &bits[4 .. 20]), "[00, 033, 71]");
		assert_eq!(format!("{:#o}", &bits[4 .. 20]),
"[
    0o00,
    0o033,
    0o71,
]");

		assert_eq!(format!("{:o}", &bits[4 ..]), "[00, 033, 773]");
		assert_eq!(format!("{:#o}", &bits[4 ..]),
"[
    0o00,
    0o033,
    0o773,
]");

		assert_eq!(format!("{:o}", &bits[.. 20]), "[000, 033, 71]");
		assert_eq!(format!("{:#o}", &bits[.. 20]),
"[
    0o000,
    0o033,
    0o71,
]");

		assert_eq!(format!("{:o}", bits), "[000, 033, 773]");
		assert_eq!(format!("{:#o}", bits),
"[
    0o000,
    0o033,
    0o773,
]");
	}

	#[test]
	fn hex_lower() {
		let data = [0u8, 0x0F, !0];
		let bits = data.bits::<Msb0>();

		assert_eq!(format!("{:x}", &bits[.. 0]), "[]");
		assert_eq!(format!("{:#x}", &bits[.. 0]), "[]");

		assert_eq!(format!("{:x}", &bits[9 .. 15]), "[13]");
		assert_eq!(format!("{:#x}", &bits[9 .. 15]),
"[
    0x13,
]");

		assert_eq!(format!("{:x}", &bits[4 .. 20]), "[0, 0f, f]");
		assert_eq!(format!("{:#x}", &bits[4 .. 20]),
"[
    0x0,
    0x0f,
    0xf,
]");

		assert_eq!(format!("{:x}", &bits[4 ..]), "[0, 0f, ff]");
		assert_eq!(format!("{:#x}", &bits[4 ..]),
"[
    0x0,
    0x0f,
    0xff,
]");

		assert_eq!(format!("{:x}", &bits[.. 20]), "[00, 0f, f]");
		assert_eq!(format!("{:#x}", &bits[.. 20]),
"[
    0x00,
    0x0f,
    0xf,
]");

		assert_eq!(format!("{:x}", bits), "[00, 0f, ff]");
		assert_eq!(format!("{:#x}", bits),
"[
    0x00,
    0x0f,
    0xff,
]");
	}

	#[test]
	fn hex_upper() {
		let data = [0u8, 0x0F, !0];
		let bits = data.bits::<Msb0>();

		assert_eq!(format!("{:X}", &bits[.. 0]), "[]");
		assert_eq!(format!("{:#X}", &bits[.. 0]), "[]");

		assert_eq!(format!("{:X}", &bits[9 .. 15]), "[13]");
		assert_eq!(format!("{:#X}", &bits[9 .. 15]),
"[
    0x13,
]");

		assert_eq!(format!("{:X}", &bits[4 .. 20]), "[0, 0F, F]");
		assert_eq!(format!("{:#X}", &bits[4 .. 20]),
"[
    0x0,
    0x0F,
    0xF,
]");

		assert_eq!(format!("{:X}", &bits[4 ..]), "[0, 0F, FF]");
		assert_eq!(format!("{:#X}", &bits[4 ..]),
"[
    0x0,
    0x0F,
    0xFF,
]");

		assert_eq!(format!("{:X}", &bits[.. 20]), "[00, 0F, F]");
		assert_eq!(format!("{:#X}", &bits[.. 20]),
"[
    0x00,
    0x0F,
    0xF,
]");

		assert_eq!(format!("{:X}", bits), "[00, 0F, FF]");
		assert_eq!(format!("{:#X}", bits),
"[
    0x00,
    0x0F,
    0xFF,
]");
	}
}