1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//! Parallel iterator types for [vectors][std::vec] (`Vec<T>`)
//!
//! You will rarely need to interact with this module directly unless you need
//! to name one of the iterator types.
//!
//! [std::vec]: https://doc.rust-lang.org/stable/std/vec/

use crate::iter::plumbing::*;
use crate::iter::*;
use crate::math::simplify_range;
use std::iter;
use std::mem;
use std::ops::{Range, RangeBounds};
use std::ptr;
use std::slice;

/// Parallel iterator that moves out of a vector.
#[derive(Debug, Clone)]
pub struct IntoIter<T: Send> {
    vec: Vec<T>,
}

impl<T: Send> IntoParallelIterator for Vec<T> {
    type Item = T;
    type Iter = IntoIter<T>;

    fn into_par_iter(self) -> Self::Iter {
        IntoIter { vec: self }
    }
}

impl<T: Send> ParallelIterator for IntoIter<T> {
    type Item = T;

    fn drive_unindexed<C>(self, consumer: C) -> C::Result
    where
        C: UnindexedConsumer<Self::Item>,
    {
        bridge(self, consumer)
    }

    fn opt_len(&self) -> Option<usize> {
        Some(self.len())
    }
}

impl<T: Send> IndexedParallelIterator for IntoIter<T> {
    fn drive<C>(self, consumer: C) -> C::Result
    where
        C: Consumer<Self::Item>,
    {
        bridge(self, consumer)
    }

    fn len(&self) -> usize {
        self.vec.len()
    }

    fn with_producer<CB>(mut self, callback: CB) -> CB::Output
    where
        CB: ProducerCallback<Self::Item>,
    {
        // Drain every item, and then the vector only needs to free its buffer.
        self.vec.par_drain(..).with_producer(callback)
    }
}

impl<'data, T: Send> ParallelDrainRange<usize> for &'data mut Vec<T> {
    type Iter = Drain<'data, T>;
    type Item = T;

    fn par_drain<R: RangeBounds<usize>>(self, range: R) -> Self::Iter {
        Drain {
            orig_len: self.len(),
            range: simplify_range(range, self.len()),
            vec: self,
        }
    }
}

/// Draining parallel iterator that moves a range out of a vector, but keeps the total capacity.
#[derive(Debug)]
pub struct Drain<'data, T: Send> {
    vec: &'data mut Vec<T>,
    range: Range<usize>,
    orig_len: usize,
}

impl<'data, T: Send> ParallelIterator for Drain<'data, T> {
    type Item = T;

    fn drive_unindexed<C>(self, consumer: C) -> C::Result
    where
        C: UnindexedConsumer<Self::Item>,
    {
        bridge(self, consumer)
    }

    fn opt_len(&self) -> Option<usize> {
        Some(self.len())
    }
}

impl<'data, T: Send> IndexedParallelIterator for Drain<'data, T> {
    fn drive<C>(self, consumer: C) -> C::Result
    where
        C: Consumer<Self::Item>,
    {
        bridge(self, consumer)
    }

    fn len(&self) -> usize {
        self.range.len()
    }

    fn with_producer<CB>(self, callback: CB) -> CB::Output
    where
        CB: ProducerCallback<Self::Item>,
    {
        unsafe {
            // Make the vector forget about the drained items, and temporarily the tail too.
            let start = self.range.start;
            self.vec.set_len(start);

            // Get a correct borrow lifetime, then extend it to the original length.
            let mut slice = &mut self.vec[start..];
            slice = slice::from_raw_parts_mut(slice.as_mut_ptr(), self.range.len());

            // The producer will move or drop each item from the drained range.
            callback.callback(DrainProducer::new(slice))
        }
    }
}

impl<'data, T: Send> Drop for Drain<'data, T> {
    fn drop(&mut self) {
        if self.range.len() > 0 {
            let Range { start, end } = self.range;
            if self.vec.len() != start {
                // We must not have produced, so just call a normal drain to remove the items.
                assert_eq!(self.vec.len(), self.orig_len);
                self.vec.drain(start..end);
            } else if end < self.orig_len {
                // The producer was responsible for consuming the drained items.
                // Move the tail items to their new place, then set the length to include them.
                unsafe {
                    let ptr = self.vec.as_mut_ptr().add(start);
                    let tail_ptr = self.vec.as_ptr().add(end);
                    let tail_len = self.orig_len - end;
                    ptr::copy(tail_ptr, ptr, tail_len);
                    self.vec.set_len(start + tail_len);
                }
            }
        }
    }
}

/// ////////////////////////////////////////////////////////////////////////

pub(crate) struct DrainProducer<'data, T: Send> {
    slice: &'data mut [T],
}

impl<'data, T: 'data + Send> DrainProducer<'data, T> {
    /// Creates a draining producer, which *moves* items from the slice.
    ///
    /// Unsafe bacause `!Copy` data must not be read after the borrow is released.
    pub(crate) unsafe fn new(slice: &'data mut [T]) -> Self {
        DrainProducer { slice }
    }
}

impl<'data, T: 'data + Send> Producer for DrainProducer<'data, T> {
    type Item = T;
    type IntoIter = SliceDrain<'data, T>;

    fn into_iter(mut self) -> Self::IntoIter {
        // replace the slice so we don't drop it twice
        let slice = mem::replace(&mut self.slice, &mut []);
        SliceDrain {
            iter: slice.iter_mut(),
        }
    }

    fn split_at(mut self, index: usize) -> (Self, Self) {
        // replace the slice so we don't drop it twice
        let slice = mem::replace(&mut self.slice, &mut []);
        let (left, right) = slice.split_at_mut(index);
        unsafe { (DrainProducer::new(left), DrainProducer::new(right)) }
    }
}

impl<'data, T: 'data + Send> Drop for DrainProducer<'data, T> {
    fn drop(&mut self) {
        // use `Drop for [T]`
        unsafe { ptr::drop_in_place(self.slice) };
    }
}

/// ////////////////////////////////////////////////////////////////////////

// like std::vec::Drain, without updating a source Vec
pub(crate) struct SliceDrain<'data, T> {
    iter: slice::IterMut<'data, T>,
}

impl<'data, T: 'data> Iterator for SliceDrain<'data, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        let ptr = self.iter.next()?;
        Some(unsafe { ptr::read(ptr) })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    fn count(self) -> usize {
        self.iter.len()
    }
}

impl<'data, T: 'data> DoubleEndedIterator for SliceDrain<'data, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        let ptr = self.iter.next_back()?;
        Some(unsafe { ptr::read(ptr) })
    }
}

impl<'data, T: 'data> ExactSizeIterator for SliceDrain<'data, T> {
    fn len(&self) -> usize {
        self.iter.len()
    }
}

impl<'data, T: 'data> iter::FusedIterator for SliceDrain<'data, T> {}

impl<'data, T: 'data> Drop for SliceDrain<'data, T> {
    fn drop(&mut self) {
        // extract the iterator so we can use `Drop for [T]`
        let iter = mem::replace(&mut self.iter, [].iter_mut());
        unsafe { ptr::drop_in_place(iter.into_slice()) };
    }
}