1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
//! Kernel density estimation

pub mod kernel;

use std::ptr;

use float::Float;
use num_cpus;
use thread_scoped as thread;

use univariate::Sample;

use self::kernel::Kernel;

/// Univariate kernel density estimator
pub struct Kde<'a, A, K>
where
    A: 'a + Float,
    K: Kernel<A>,
{
    bandwidth: A,
    kernel: K,
    sample: &'a Sample<A>,
}

impl<'a, A, K> Kde<'a, A, K>
where
    A: 'a + Float,
    K: Kernel<A>,
{
    /// Creates a new kernel density estimator from the `sample`, using a kernel and estimating
    /// the bandwidth using the method `bw`
    pub fn new(sample: &'a Sample<A>, kernel: K, bw: Bandwidth<A>) -> Kde<'a, A, K> {
        Kde {
            bandwidth: bw.estimate(sample),
            kernel,
            sample,
        }
    }

    /// Returns the bandwidth used by the estimator
    pub fn bandwidth(&self) -> A {
        self.bandwidth
    }

    /// Maps the KDE over `xs`
    ///
    /// - Multihreaded
    pub fn map(&self, xs: &[A]) -> Box<[A]> {
        let n = xs.len();
        let ncpus = num_cpus::get();

        // TODO need some sensible threshold to trigger the multi-threaded path
        if ncpus > 1 && n > ncpus {
            let granularity = n / ncpus + 1;

            unsafe {
                let mut ys = Vec::with_capacity(n);
                ys.set_len(n);

                {
                    let _ = ys
                        .chunks_mut(granularity)
                        .enumerate()
                        .map(|(i, ys)| {
                            let offset = i * granularity;

                            thread::scoped(move || {
                                for (i, y) in ys.iter_mut().enumerate() {
                                    ptr::write(y, self.estimate(*xs.get_unchecked(offset + i)))
                                }
                            })
                        })
                        .collect::<Vec<_>>();
                }

                ys.into_boxed_slice()
            }
        } else {
            xs.iter()
                .map(|&x| self.estimate(x))
                .collect::<Vec<_>>()
                .into_boxed_slice()
        }
    }

    /// Estimates the probability density of `x`
    pub fn estimate(&self, x: A) -> A {
        let _0 = A::cast(0);
        let slice = self.sample;
        let h = self.bandwidth;
        let n = A::cast(slice.len());

        let sum = slice
            .iter()
            .fold(_0, |acc, &x_i| acc + self.kernel.evaluate((x - x_i) / h));

        sum / h / n
    }
}

/// Method to estimate the bandwidth
pub enum Bandwidth<A>
where
    A: Float,
{
    /// Use this value as the bandwidth
    Manual(A),
    /// Use Silverman's rule of thumb to estimate the bandwidth from the sample
    Silverman,
}

impl<A> Bandwidth<A>
where
    A: Float,
{
    fn estimate(self, sample: &Sample<A>) -> A {
        match self {
            Bandwidth::Silverman => {
                let factor = A::cast(4. / 3.);
                let exponent = A::cast(1. / 5.);
                let n = A::cast(sample.len());
                let sigma = sample.std_dev(None);

                sigma * (factor / n).powf(exponent)
            }
            Bandwidth::Manual(bw) => bw,
        }
    }
}

#[cfg(test)]
macro_rules! test {
    ($ty:ident) => {
        mod $ty {
            use quickcheck::TestResult;

            use univariate::kde::kernel::Gaussian;
            use univariate::kde::{Bandwidth, Kde};
            use univariate::Sample;

            // The [-inf inf] integral of the estimated PDF should be one
            quickcheck! {
                fn integral(size: usize, start: usize) -> TestResult {
                    const DX: $ty = 1e-3;

                    if let Some(v) = ::test::vec::<$ty>(size, start) {
                        let slice = &v[start..];
                        let data = Sample::new(slice);
                        let kde = Kde::new(data, Gaussian, Bandwidth::Silverman);
                        let h = kde.bandwidth();
                        // NB Obviously a [-inf inf] integral is not feasible, but this range works
                        // quite well
                        let (a, b) = (data.min() - 5. * h, data.max() + 5. * h);

                        let mut acc = 0.;
                        let mut x = a;
                        let mut y = kde.estimate(a);

                        while x < b {
                            acc += DX * y / 2.;

                            x += DX;
                            y = kde.estimate(x);

                            acc += DX * y / 2.;
                        }

                        TestResult::from_bool(relative_eq!(acc, 1., epsilon = 2e-5))
                    } else {
                        TestResult::discard()
                    }
                }
            }
        }
    };
}

#[cfg(test)]
mod test {
    test!(f32);
    test!(f64);
}