1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2019 Isis Lovecruft, Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <[email protected]>
// - Henry de Valence <[email protected]>

//! Code for fixed- and sliding-window functionality

#![allow(non_snake_case)]

use core::fmt::Debug;

use subtle::ConditionallyNegatable;
use subtle::ConditionallySelectable;
use subtle::ConstantTimeEq;
use subtle::Choice;

use traits::Identity;

use edwards::EdwardsPoint;
use backend::serial::curve_models::ProjectiveNielsPoint;
use backend::serial::curve_models::AffineNielsPoint;

use zeroize::Zeroize;

/// A lookup table of precomputed multiples of a point \\(P\\), used to
/// compute \\( xP \\) for \\( -8 \leq x \leq 8 \\).
///
/// The computation of \\( xP \\) is done in constant time by the `select` function.
///
/// Since `LookupTable` does not implement `Index`, it's more difficult
/// to accidentally use the table directly.  Unfortunately the table is
/// only `pub(crate)` so that we can write hardcoded constants, so it's
/// still technically possible.  It would be nice to prevent direct
/// access to the table.
///
/// XXX make this generic with respect to table size
#[derive(Copy, Clone)]
pub struct LookupTable<T>(pub(crate) [T; 8]);

impl<T> LookupTable<T>
where
    T: Identity + ConditionallySelectable + ConditionallyNegatable,
{
    /// Given \\(-8 \leq x \leq 8\\), return \\(xP\\) in constant time.
    pub fn select(&self, x: i8) -> T {
        debug_assert!(x >= -8);
        debug_assert!(x <= 8);

        // Compute xabs = |x|
        let xmask = x >> 7;
        let xabs = (x + xmask) ^ xmask;

        // Set t = 0 * P = identity
        let mut t = T::identity();
        for j in 1..9 {
            // Copy `points[j-1] == j*P` onto `t` in constant time if `|x| == j`.
            let c = (xabs as u8).ct_eq(&(j as u8));
            t.conditional_assign(&self.0[j - 1], c);
        }
        // Now t == |x| * P.

        let neg_mask = Choice::from((xmask & 1) as u8);
        t.conditional_negate(neg_mask);
        // Now t == x * P.

        t
    }
}

impl<T: Copy + Default> Default for LookupTable<T> {
    fn default() -> LookupTable<T> {
        LookupTable([T::default(); 8])
    }
}

impl<T: Debug> Debug for LookupTable<T> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "LookupTable({:?})", self.0)
    }
}

impl<'a> From<&'a EdwardsPoint> for LookupTable<ProjectiveNielsPoint> {
    fn from(P: &'a EdwardsPoint) -> Self {
        let mut points = [P.to_projective_niels(); 8];
        for j in 0..7 {
            points[j + 1] = (P + &points[j]).to_extended().to_projective_niels();
        }
        LookupTable(points)
    }
}

impl<'a> From<&'a EdwardsPoint> for LookupTable<AffineNielsPoint> {
    fn from(P: &'a EdwardsPoint) -> Self {
        let mut points = [P.to_affine_niels(); 8];
        // XXX batch inversion would be good if perf mattered here
        for j in 0..7 {
            points[j + 1] = (P + &points[j]).to_extended().to_affine_niels()
        }
        LookupTable(points)
    }
}

impl<T> Zeroize for LookupTable<T>
where
    T: Copy + Default + Zeroize
{
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

/// Holds odd multiples 1A, 3A, ..., 15A of a point A.
#[derive(Copy, Clone)]
pub(crate) struct NafLookupTable5<T>(pub(crate) [T; 8]);

impl<T: Copy> NafLookupTable5<T> {
    /// Given public, odd \\( x \\) with \\( 0 < x < 2^4 \\), return \\(xA\\).
    pub fn select(&self, x: usize) -> T {
        debug_assert_eq!(x & 1, 1);
        debug_assert!(x < 16);

        self.0[x / 2]
    }
}

impl<T: Debug> Debug for NafLookupTable5<T> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "NafLookupTable5({:?})", self.0)
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable5<ProjectiveNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.to_projective_niels(); 8];
        let A2 = A.double();
        for i in 0..7 {
            Ai[i + 1] = (&A2 + &Ai[i]).to_extended().to_projective_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A]
        NafLookupTable5(Ai)
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable5<AffineNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.to_affine_niels(); 8];
        let A2 = A.double();
        for i in 0..7 {
            Ai[i + 1] = (&A2 + &Ai[i]).to_extended().to_affine_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A]
        NafLookupTable5(Ai)
    }
}

/// Holds stuff up to 8.
#[derive(Copy, Clone)]
pub(crate) struct NafLookupTable8<T>(pub(crate) [T; 64]);

impl<T: Copy> NafLookupTable8<T> {
    pub fn select(&self, x: usize) -> T {
        debug_assert_eq!(x & 1, 1);
        debug_assert!(x < 128);

        self.0[x / 2]
    }
}

impl<T: Debug> Debug for NafLookupTable8<T> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "NafLookupTable8([\n")?;
        for i in 0..64 {
            write!(f, "\t{:?},\n", &self.0[i])?;
        }
        write!(f, "])")
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable8<ProjectiveNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.to_projective_niels(); 64];
        let A2 = A.double();
        for i in 0..63 {
            Ai[i + 1] = (&A2 + &Ai[i]).to_extended().to_projective_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A, ..., 127A]
        NafLookupTable8(Ai)
    }
}

impl<'a> From<&'a EdwardsPoint> for NafLookupTable8<AffineNielsPoint> {
    fn from(A: &'a EdwardsPoint) -> Self {
        let mut Ai = [A.to_affine_niels(); 64];
        let A2 = A.double();
        for i in 0..63 {
            Ai[i + 1] = (&A2 + &Ai[i]).to_extended().to_affine_niels();
        }
        // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A, ..., 127A]
        NafLookupTable8(Ai)
    }
}