1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//! This crate provides an encoder/decoder for Reed-Solomon erasure code.
//!
//! Please note that erasure coding means errors are not directly detected or corrected,
//! but missing data pieces (shards) can be reconstructed given that
//! the configuration provides high enough redundancy.
//!
//! You will have to implement error detection separately (e.g. via checksums)
//! and simply leave out the corrupted shards when attempting to reconstruct
//! the missing data.
#![allow(dead_code)]

#[cfg(test)]
#[macro_use]
extern crate quickcheck;

#[cfg(test)]
extern crate rand;

extern crate smallvec;

#[cfg(feature = "simd-accel")]
extern crate libc;

use std::iter::{self, FromIterator};

#[macro_use]
mod macros;

mod core;
mod errors;
mod inversion_tree;
mod matrix;

#[cfg(test)]
mod tests;

pub mod galois_16;
pub mod galois_8;

pub use crate::errors::Error;
pub use crate::errors::SBSError;

pub use crate::core::ReedSolomon;
pub use crate::core::ShardByShard;

/// A finite field to perform encoding over.
pub trait Field: Sized {
    /// The order of the field. This is a limit on the number of shards
    /// in an encoding.
    const ORDER: usize;

    /// The representational type of the field.
    type Elem: Default + Clone + Copy + PartialEq + std::fmt::Debug;

    /// Add two elements together.
    fn add(a: Self::Elem, b: Self::Elem) -> Self::Elem;

    /// Multiply two elements together.
    fn mul(a: Self::Elem, b: Self::Elem) -> Self::Elem;

    /// Divide a by b. Panics is b is zero.
    fn div(a: Self::Elem, b: Self::Elem) -> Self::Elem;

    /// Raise `a` to the n'th power.
    fn exp(a: Self::Elem, n: usize) -> Self::Elem;

    /// The "zero" element or additive identity.
    fn zero() -> Self::Elem;

    /// The "one" element or multiplicative identity.
    fn one() -> Self::Elem;

    fn nth_internal(n: usize) -> Self::Elem;

    /// Yield the nth element of the field. Panics if n >= ORDER.
    /// Assignment is arbitrary but must be unique to `n`.
    fn nth(n: usize) -> Self::Elem {
        if n >= Self::ORDER {
            let pow = (Self::ORDER as f32).log(2.0) as usize;
            panic!("{} out of bounds for GF(2^{}) member", n, pow)
        }

        Self::nth_internal(n)
    }

    /// Multiply a slice of elements by another. Writes into the output slice.
    ///
    /// # Panics
    /// Panics if the output slice does not have equal length to the input.
    fn mul_slice(elem: Self::Elem, input: &[Self::Elem], out: &mut [Self::Elem]) {
        assert_eq!(input.len(), out.len());

        for (i, o) in input.iter().zip(out) {
            *o = Self::mul(elem.clone(), i.clone())
        }
    }

    /// Multiply a slice of elements by another, adding each result to the corresponding value in
    /// `out`.
    ///
    /// # Panics
    /// Panics if the output slice does not have equal length to the input.
    fn mul_slice_add(elem: Self::Elem, input: &[Self::Elem], out: &mut [Self::Elem]) {
        assert_eq!(input.len(), out.len());

        for (i, o) in input.iter().zip(out) {
            *o = Self::add(o.clone(), Self::mul(elem.clone(), i.clone()))
        }
    }
}

/// Something which might hold a shard.
///
/// This trait is used in reconstruction, where some of the shards
/// may be unknown.
pub trait ReconstructShard<F: Field> {
    /// The size of the shard data; `None` if empty.
    fn len(&self) -> Option<usize>;

    /// Get a mutable reference to the shard data, returning `None` if uninitialized.
    fn get(&mut self) -> Option<&mut [F::Elem]>;

    /// Get a mutable reference to the shard data, initializing it to the
    /// given length if it was `None`. Returns an error if initialization fails.
    fn get_or_initialize(
        &mut self,
        len: usize,
    ) -> Result<&mut [F::Elem], Result<&mut [F::Elem], Error>>;
}

impl<F: Field, T: AsRef<[F::Elem]> + AsMut<[F::Elem]> + FromIterator<F::Elem>> ReconstructShard<F>
    for Option<T>
{
    fn len(&self) -> Option<usize> {
        self.as_ref().map(|x| x.as_ref().len())
    }

    fn get(&mut self) -> Option<&mut [F::Elem]> {
        self.as_mut().map(|x| x.as_mut())
    }

    fn get_or_initialize(
        &mut self,
        len: usize,
    ) -> Result<&mut [F::Elem], Result<&mut [F::Elem], Error>> {
        let is_some = self.is_some();
        let x = self
            .get_or_insert_with(|| iter::repeat(F::zero()).take(len).collect())
            .as_mut();

        if is_some {
            Ok(x)
        } else {
            Err(Ok(x))
        }
    }
}

impl<F: Field, T: AsRef<[F::Elem]> + AsMut<[F::Elem]>> ReconstructShard<F> for (T, bool) {
    fn len(&self) -> Option<usize> {
        if !self.1 {
            None
        } else {
            Some(self.0.as_ref().len())
        }
    }

    fn get(&mut self) -> Option<&mut [F::Elem]> {
        if !self.1 {
            None
        } else {
            Some(self.0.as_mut())
        }
    }

    fn get_or_initialize(
        &mut self,
        len: usize,
    ) -> Result<&mut [F::Elem], Result<&mut [F::Elem], Error>> {
        let x = self.0.as_mut();
        if x.len() == len {
            if self.1 {
                Ok(x)
            } else {
                Err(Ok(x))
            }
        } else {
            Err(Err(Error::IncorrectShardSize))
        }
    }
}