1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/*! Parallel bitfield access. This module provides parallel, multiple-bit, access to a `BitSlice`. This functionality permits the use of `BitSlice` as a library-level implementation of the bitfield language feature found in C and C++. The `BitField` trait is not sealed against client implementation, as there is no useful way to automatically use a `Cursor` implementation to provide a universal behavior. As such, the trait has some requirements that the compiler cannot enforce for client implementations. # Batch Behavior The purpose of this trait is to provide access to arbitrary bit regions as if they were an ordinary memory location. As such, it is important for implementations of this trait to provide shift/mask register transfer behavior where possible, for as wide a span as possible in each action. Implementations of this trait should *not* use bit-by-bit iteration. # Register Bit Order Preservation As a default assumption – user orderings *may* violate this, but *should* not – each element of slice memory used to store part of a value should not reorder the value bits. Transfer between slice memory and a CPU register should solely be an ordinary value load or store between memory and the register, and a shift/mask operation to select the part of the value that is live. # Endianness The `_le` and `_be` methods of `BitField` refer to the order in which `T: BitStore` elements of the slice are assigned significance when containing fragments of a stored data value. Within any `T` element, the order of its constituent bytes is *not* governed by the `BitField` trait method. The provided `BitOrder` implementors `Lsb0` and `Msb0` use the local machine’s byte ordering. Other cursors *may* implement ordering of bytes within `T` elements differently, for instance by calling `.to_be_bytes` before store and `from_be_bytes` after load, !*/ use crate::{ access::BitAccess, order::{ Lsb0, Msb0, }, slice::BitSlice, store::BitStore, }; use core::{ cmp, mem, ptr, }; use either::Either; #[cfg(feature = "alloc")] use crate::{ boxed::BitBox, order::BitOrder, vec::BitVec, }; /** Permit a specific `BitSlice` to be used for C-style bitfield access. Orders that permit batched access to regions of memory are enabled to load data from a `BitSlice` and store data to a `BitSlice` with faster behavior than the default bit-by-bit traversal. This trait transfers data between a `BitSlice` and an element. The trait functions always place the live bit region against the least significant bit edge of the transfer element (return value for `load`, argument for `store`). Implementations are encouraged to preserve in-memory bit ordering, so that call sites can provide a value pattern that the user can clearly see matches what they expect for memory ordering. These methods merely move data from a fixed location in an element to a variable location in the slice. Methods should be called as `bits[start .. end].load_or_store()`, where the range subslice selects up to but no more than the `U::BITS` element width. **/ pub trait BitField { /// Load the sequence of bits from `self` into the least-significant bits of /// an element. /// /// This can load any fundamental type which implements `BitStore`. Other /// Rust fundamental types which do not implement it must be recast /// appropriately by the user. /// /// The default implementation of this function calls [`load_le`] on /// little-endian byte-ordered CPUs, and [`load_be`] on big-endian /// byte-ordered CPUs. /// /// # Parameters /// /// - `&self`: A read reference to some bits in memory. This slice must be /// trimmed to have a width no more than the `U::BITS` width of the type /// being loaded. This can be accomplished with range indexing on a larger /// slice. /// /// # Returns /// /// A `U` value whose least `self.len()` significant bits are filled with /// the bits of `self`. /// /// # Panics /// /// If `self` is empty, or wider than a single `U` element, this panics. /// /// [`load_be`]: #tymethod.load_be /// [`load_le`]: #tymethod.load_le fn load<U>(&self) -> U where U: BitStore { #[cfg(target_endian = "little")] return self.load_le(); #[cfg(target_endian = "big")] return self.load_be(); } /// Load from `self`, using little-endian element ordering. /// /// This function interprets a multi-element slice as having its least /// significant chunk in the low memory address, and its most significant /// chunk in the high memory address. Each element `T` is still interpreted /// from individual bytes according to the local CPU ordering. /// /// # Parameters /// /// - `&self`: A read reference to some bits in memory. This slice must be /// trimmed to have a width no more than the `U::BITS` width of the type /// being loaded. This can be accomplished with range indexing on a larger /// slice. /// /// # Returns /// /// A `U` value whose least `self.len()` significant bits are filled with /// the bits of `self`. If `self` spans multiple `T` elements, then the /// lowest-address `T` is interpreted as containing the least significant /// bits of the `U` return value, and the highest-address `T` is interpreted /// as containing its most significant bits. /// /// # Panics /// /// If `self` is empty, or wider than a single `U` element, this panics. fn load_le<U>(&self) -> U where U: BitStore; /// Load from `self`, using big-endian element ordering. /// /// This function interprets a multi-element slice as having its most /// significant chunk in the low memory address, and its least significant /// chunk in the high memory address. Each element `T` is still interpreted /// from individual bytes according to the local CPU ordering. /// /// # Parameters /// /// - `&self`: A read reference to some bits in memory. This slice must be /// trimmed to have a width no more than the `U::BITS` width of the type /// being loaded. This can be accomplished with range indexing on a larger /// slice. /// /// # Returns /// /// A `U` value whose least `self.len()` significant bits are filled with /// the bits of `self`. If `self` spans multiple `T` elements, then the /// lowest-address `T` is interpreted as containing the most significant /// bits of the `U` return value, and the highest-address `T` is interpreted /// as containing its least significant bits. fn load_be<U>(&self) -> U where U: BitStore; /// Stores a sequence of bits from the user into the domain of `self`. /// /// This can store any fundamental type which implements `BitStore`. Other /// Rust fundamental types which do not implement it must be recast /// appropriately by the user. /// /// The default implementation of this function calls [`store_le`] on /// little-endian byte-ordered CPUs, and [`store_be`] on big-endian /// byte-ordered CPUs. /// /// # Parameters /// /// - `&mut self`: A write reference to some bits in memory. This slice must /// be trimmed to have a width no more than the `U::BITS` width of the /// type being stored. This can be accomplished with range indexing on a /// larger slice. /// - `value`: A value, whose `self.len()` least significant bits will be /// stored into `self`. /// /// # Behavior /// /// The `self.len()` least significant bits of `value` are written into the /// domain of `self`. /// /// # Panics /// /// If `self` is empty, or wider than a single `U` element, this panics. /// /// [`store_be`]: #tymethod.store_be /// [`store_le`]: #tymethod.store_le fn store<U>(&mut self, value: U) where U: BitStore { #[cfg(target_endian = "little")] self.store_le(value); #[cfg(target_endian = "big")] self.store_be(value); } /// Store into `self`, using little-endian element ordering. /// /// This function interprets a multi-element slice as having its least /// significant chunk in the low memory address, and its most significant /// chunk in the high memory address. Each element `T` is still interpreted /// from individual bytes according to the local CPU ordering. /// /// # Parameters /// /// - `&mut self`: A write reference to some bits in memory. This slice must /// be trimmed to have a width no more than the `U::BITS` width of the /// type being stored. This can be accomplished with range indexing on a /// larger slice. /// - `value`: A value, whose `self.len()` least significant bits will be /// stored into `self`. /// /// # Behavior /// /// The `self.len()` least significant bits of `value` are written into the /// domain of `self`. If `self` spans multiple `T` elements, then the /// lowest-address `T` is interpreted as containing the least significant /// bits of the `U` return value, and the highest-address `T` is interpreted /// as containing its most significant bits. /// /// # Panics /// /// If `self` is empty, or wider than a single `U` element, this panics. fn store_le<U>(&mut self, value: U) where U: BitStore; /// Store into `self`, using big-endian element ordering. /// /// This function interprets a multi-element slice as having its most /// significant chunk in the low memory address, and its least significant /// chunk in the high memory address. Each element `T` is still interpreted /// from individual bytes according to the local CPU ordering. /// /// # Parameters /// /// - `&mut self`: A write reference to some bits in memory. This slice must /// be trimmed to have a width no more than the `U::BITS` width of the /// type being stored. This can be accomplished with range indexing on a /// larger slice. /// - `value`: A value, whose `self.len()` least significant bits will be /// stored into `self`. /// /// # Behavior /// /// The `self.len()` least significant bits of `value` are written into the /// domain of `self`. If `self` spans multiple `T` elements, then the /// lowest-address `T` is interpreted as containing the most significant /// bits of the `U` return value, and the highest-address `T` is interpreted /// as containing its least significant bits. /// /// # Panics /// /// If `self` is empty, or wider than a single `U` element, this panics. fn store_be<U>(&mut self, value: U) where U: BitStore; } impl<T> BitField for BitSlice<Lsb0, T> where T: BitStore { fn load_le<U>(&self) -> U where U: BitStore { let len = self.len(); if !(1 ..= U::BITS as usize).contains(&len) { panic!("Cannot load {} bits from a {}-bit region", U::BITS, len); } match self.bitptr().domain().splat() { /* The live bits are in the interior of a single element. This path only needs to load the element, shift it right by the distance from LSedge to the live region, and mask it for the length of `self`. */ Either::Right((head, elt, _)) => resize((elt.load() >> *head) & mask_for::<T>(len)), /* The live region touches at least one element edge. This block reads chunks from the slice memory into an accumulator, from the most-significant chunk to the least-significant. Each read must collect the live section of the chunk into a temporary, then shift the accumulator left by the chunk’s bit width, then write the temporary into the newly-vacated least significant bits of the accumulator. */ Either::Left((head, body, tail)) => { let mut accum = 0usize; // If the tail exists, it contains the most significant chunk // of the value, on the LSedge side. if let Some((tail, t)) = tail { // Load, mask, resize, and store. No other data is present. accum = resize(tail.load() & mask_for::<T>(*t as usize)); } // Read the body elements, from high address to low, into the // accumulator. if let Some(elts) = body { for elt in elts.iter().rev() { let val: usize = resize(elt.load()); accum <<= T::BITS; accum |= val; } } // If the head exists, it contains the least significant chunk // of the value, on the MSedge side. if let Some((h, head)) = head { // Get the live region’s distance from the LSedge. let lsedge = *h; // Find the region width (MSedge to head). let width = T::BITS - lsedge; // Load the element, shift down to LSedge, and resize. let val: usize = resize(head.load() >> lsedge); accum <<= width; accum |= val; } resize(accum) }, } } fn load_be<U>(&self) -> U where U: BitStore { let len = self.len(); if !(1 ..= U::BITS as usize).contains(&len) { panic!("Cannot load {} bits from a {}-bit region", U::BITS, len); } match self.bitptr().domain().splat() { /* The live bits are in the interior of a single element. This path only needs to load the element, shift it right by the distance from LSedge to the live region, and mask it for the length of `self`. */ Either::Right((head, elt, _)) => resize((elt.load() >> *head) & mask_for::<T>(len)), /* The live region touches at least one element edge. This block reads chunks from the slice memory into an accumulator, from the most-significant chunk to the least-significant. Each read must collect the live section of the chunk into a temporary, then shift the accumulator left by the chunk’s width, then write the temporary into the newly-vacated least significant bits of the accumulator. */ Either::Left((head, body, tail)) => { let mut accum = 0usize; // If the head exists, it contains the most significant chunk // of the value, on the MSedge side. if let Some((h, head)) = head { // Load, move, resize, and store. No other data is present. accum = resize(head.load() >> *h); } // Read the body elements, from low address to high, into the // accumulator. if let Some(elts) = body { for elt in elts.iter() { let val: usize = resize(elt.load()); accum <<= T::BITS; accum |= val; } } // If the tail exists, it contains the least significant chunk // of the value, on the LSedge side. if let Some((tail, t)) = tail { // Get the live region’s width. let width = *t as usize; // Load, mask, and resize. let val: usize = resize(tail.load() & mask_for::<T>(width)); // Shift the accumulator by the live width, and store. accum <<= width; accum |= val; } resize(accum) }, } } fn store_le<U>(&mut self, value: U) where U: BitStore { let len = self.len(); if !(1 ..= U::BITS as usize).contains(&len) { panic!("Cannot store {} bits in a {}-bit region", U::BITS, len); } let value = value & mask_for(len); match self.bitptr().domain().splat() { /* The live region is in the interior of a single element. The `value` is shifted left by the region’s distance from the LSedge, then written directly into place. */ Either::Right((head, elt, _)) => { // Get the region’s distance from the LSedge. let lsedge = *head; // Erase the live region. elt.clear_bits(!(mask_for::<T>(len) << lsedge)); // Shift the value to fit the region, and write. elt.set_bits(resize::<U, T>(value) << lsedge); }, /* The live region touches at least one element edge. This block writes chunks from the value into slice memory, from the least-significant chunk to the most-significant. Each write moves a slice chunk’s width of bits from the LSedge of the value into memory, then shifts the value right by that width. */ Either::Left((head, body, tail)) => { let mut value: usize = resize(value); // If the head exists, it contains the least significant chunk // of the value, on the MSedge side. if let Some((h, head)) = head { // Get the region distance from the LSedge. let lsedge = *h; // Find the region width (MSedge to head). let width = T::BITS - lsedge; // Take the region-width LSedge bits of the value. let val = value & mask_for::<usize>(width as usize); // Erase the region. head.clear_bits(T::TRUE >> width); // Shift the snippet to fit the region, and write. head.set_bits(resize::<usize, T>(val) << lsedge); // Discard the now-written bits from the value. value >>= width; } // Write into the body elements, from low address to high, from // the value. if let Some(elts) = body { for elt in elts.iter() { elt.store(resize(value)); value >>= T::BITS; } } // If the tail exists, it contains the most significant chunk // of the value, on the LSedge side. if let Some((tail, t)) = tail { // Get the region width. let width = *t; // Take the region-width LSedge bits of the value. let val = value & mask_for::<usize>(width as usize); // Erase the region. tail.clear_bits(T::TRUE << width); // Write the snippet into the region. tail.set_bits(resize(val)); } }, } } fn store_be<U>(&mut self, value: U) where U: BitStore { let len = self.len(); if !(1 ..= U::BITS as usize).contains(&len) { panic!("Cannot store {} bits in a {}-bit region", U::BITS, len); } let value = value & mask_for(len); match self.bitptr().domain().splat() { /* The live region is in the interior of a single element. The `value` is shifted left by the region’s distance from the LSedge, then written directly into place. */ Either::Right((head, elt, _)) => { // Get the region’s distance from the LSedge. let lsedge = *head; // Erase the live region. elt.clear_bits(!(mask_for::<T>(len) << lsedge)); // Shift the value to fit the region, and write. elt.set_bits(resize::<U, T>(value) << lsedge); }, Either::Left((head, body, tail)) => { let mut value: usize = resize(value); // If the tail exists, it contains the least significant chunk // of the value, on the LSedge side. if let Some((tail, t)) = tail { // Get the region width. let width = *t; // Take the region-width LSedge bits of the value. let val = value & mask_for::<usize>(width as usize); // Erase the region. tail.clear_bits(T::TRUE << width); // Write the snippet into the region. tail.set_bits(resize(val)); // Discard the now-written bits from the value. value >>= width; } // Write into the body elements, from high address to low, from // the value. if let Some(elts) = body { for elt in elts.iter().rev() { elt.store(resize(value)); value >>= T::BITS; } } // If the head exists, it contains the most significant chunk // of the value, on the MSedge side. if let Some((h, head)) = head { // Get the region distance from the LSedge. let lsedge = *h; // Find the region width (MSedge to head). let width = T::BITS - lsedge; // Take the region-width LSedge bits of the value. let val = value & mask_for::<usize>(width as usize); // Erase the region. head.clear_bits(T::TRUE >> width); // Shift the snippet to fit the region, and write. head.set_bits(resize::<usize, T>(val) << lsedge); } }, } } } impl<T> BitField for BitSlice<Msb0, T> where T: BitStore { fn load_le<U>(&self) -> U where U: BitStore { let len = self.len(); if !(1 ..= U::BITS as usize).contains(&len) { panic!("Cannot load {} bits from a {}-bit region", U::BITS, len); } match self.bitptr().domain().splat() { /* The live bits are in the interior of a single element. This path only needs to load the element, shift it right by the distance from LSedge to the live region, and mask it for the length of `self`. */ Either::Right((_, elt, tail)) => resize((elt.load() >> (T::BITS - *tail)) & mask_for::<T>(len)), /* The live region touches at least one element edge. This block reads chunks from the slice memory into an accumulator, from the most-significant chunk to the least-significant. Each read must collect the live section of the chunk into a temporary, then shift the accumulator left by the chunk’s bit width, then write the temporary into the newly-vacated least significant bits of the accumulator. */ Either::Left((head, body, tail)) => { let mut accum = 0usize; // If the tail exists, it contains the most significant chunk // of the value, on the MSedge side. if let Some((tail, t)) = tail { // Find the live region’s distance from the LSedge. let lsedge = T::BITS - *t; // Load, move, resize, and store. No other data is present. accum = resize(tail.load() >> lsedge); } // Read the body elements, from high address to low, into the // accumulator. if let Some(elts) = body { for elt in elts.iter().rev() { let val: usize = resize(elt.load()); accum <<= T::BITS; accum |= val; } } // If the head exists, it contains the least significant chunk // of the value, on the LSedge side. if let Some((h, head)) = head { // Find the region width (head to LSedge). let width = (T::BITS - *h) as usize; // Load the element, mask, and resize. let val: usize = resize(head.load() & mask_for::<T>(width)); accum <<= width; accum |= val; } resize(accum) }, } } fn load_be<U>(&self) -> U where U: BitStore { let len = self.len(); if !(1 ..= U::BITS as usize).contains(&len) { panic!("Cannot load {} bits from a {}-bit region", U::BITS, len); } match self.bitptr().domain().splat() { /* The live bits are in the interior of a single element. This path only needs to load the element, shift it right by the distance from LSedge to the live region, and mask it for the length of `self`. */ Either::Right((_, elt, tail)) => resize((elt.load() >> (T::BITS - *tail)) & mask_for::<T>(len)), /* The live region touches at least one element edge. This block reads chunks from the slice memory into an accumulator, from the most-significant chunk to the least-significant. Each read must collect the live section of the chunk into a temporary, then shift the accumulator left by the chunk’s bit width, then write the temporary into the newly-vacated least significant bits of the accumulator. */ Either::Left((head, body, tail)) => { let mut accum = 0usize; // If the head exists, it contains the most significant chunk // of the value, on the LSedge side. if let Some((h, head)) = head { // Find the region width (head to LSedge). let width = T::BITS - *h; // Load, mask, resize, and store. No other data is present. accum = resize(head.load() & mask_for::<T>(width as usize)); } // Read the body elements, from low address to high, into the // accumulator. if let Some(elts) = body { for elt in elts.iter() { let val: usize = resize(elt.load()); accum <<= T::BITS; accum |= val; } } // If the tail exists, it contains the least significant chunk // of the value, on the MSedge side. if let Some((tail, t)) = tail { // Find the live region’s distance from LSedge. let lsedge = T::BITS - *t; // Load the element, shift down to LSedge, and resize. let val: usize = resize(tail.load() >> lsedge); accum <<= *t; accum |= val; } resize(accum) }, } } fn store_le<U>(&mut self, value: U) where U: BitStore { let len = self.len(); if !(1 ..= U::BITS as usize).contains(&len) { panic!("Cannot store {} bits in a {}-bit region", U::BITS, len); } let value = value & mask_for(len); match self.bitptr().domain().splat() { /* The live region is in the interior of a single element. The `value` is shifted left by the region’s distance from the LSedge, then written directly into place. */ Either::Right((_, elt, tail)) => { // Get the region’s distance from the LSedge. let lsedge = T::BITS - *tail; // Erase the live region. elt.clear_bits(!(mask_for::<T>(len) << lsedge)); // Shift the value to fit the region, and write. elt.set_bits(resize::<U, T>(value) << lsedge); }, /* The live region touches at least one element edge. This block writes chunks from the value into slice memory, from the least-significant chunk to the most-significant. Each write moves a slice chunk’s width of bits from the LSedge of the value into memory, then shifts the value right by that width. */ Either::Left((head, body, tail)) => { let mut value: usize = resize(value); // If the head exists, it contains the least significant chunk // of the value, on the LSedge side. if let Some((h, head)) = head { // Get the region width (head to LSedge). let width = T::BITS - *h; // Take the region-width LSedge bits of the value. let val = value & mask_for::<usize>(width as usize); // Erase the region. head.clear_bits(T::TRUE << width); // Write the snippet into the region. head.set_bits(resize(val)); // Discard the now-written bits from the value. value >>= width; } // Write into the body elements, from low address to high, from // the value. if let Some(elts) = body { for elt in elts.iter() { elt.store(resize(value)); value >>= T::BITS; } } // If the tail exists, it contains the most significant chunk // of the value, on the MSedge side. if let Some((tail, t)) = tail { // Get the region width. let width = *t; // Find the region distance from the LSedge. let lsedge = T::BITS - width; // Take the region-width LSedge bits of the value. let val = value & mask_for::<usize>(width as usize); // Erase the region. tail.clear_bits(T::TRUE >> width); // Shift the snippet to fit the region, and write. tail.set_bits(resize::<usize, T>(val) << lsedge); } }, } } fn store_be<U>(&mut self, value: U) where U: BitStore { let len = self.len(); if !(1 ..= U::BITS as usize).contains(&len) { panic!("Cannot store {} bits in a {}-bit region", U::BITS, len); } let value = value & mask_for(len); match self.bitptr().domain().splat() { /* The live region is in the interior of a single element. The `value` is shifted left by the region’s distance from the LSedge, then written directly into place. */ Either::Right((_, elt, tail)) => { // Get the region’s distance from the LSedge. let lsedge = T::BITS - *tail; // Erase the live region. elt.clear_bits(!(mask_for::<T>(len) << lsedge)); // Shift the value to fit the region, and write. elt.set_bits(resize::<U, T>(value) << lsedge); }, /* The live region touches at least one element edge. This block writes chunks from the value into slice memory, from the least-significant chunk to the most-significant. Each write moves a slice chunk’s width of bits from the LSedge of the value into memory, then shifts the value right by that width. */ Either::Left((head, body, tail)) => { let mut value: usize = resize(value); // If the tail exists, it contains the least significant chunk // of the value, on the MSedge side. if let Some((tail, t)) = tail { // Get the region width (MSedge to tail). let width = *t; // Find the region distance from the LSedge. let lsedge = T::BITS - width; // Take the region-width LSedge bits of the value. let val = value & mask_for::<usize>(width as usize); // Erase the region. tail.clear_bits(T::TRUE >> width); // Shift the snippet to fit the region, and write. tail.set_bits(resize::<usize, T>(val) << lsedge); // Discard the now-written bits from the value. value >>= width; } // Write into the body elements, from high address to low, from // the value. if let Some(elts) = body { for elt in elts.iter().rev() { elt.store(resize(value)); value >>= T::BITS; } } // If the head exists, it contains the most significant chunk // of the value, on the LSedge side. if let Some((h, head)) = head { // Find the region width. let width = T::BITS - *h; // Take the region-width LSedge bits of the value. let val = value & mask_for::<usize>(width as usize); // Erase the region. head.clear_bits(T::TRUE << width); // Write the snippet into the region. head.set_bits(resize(val)); } }, } } } #[cfg(feature = "alloc")] impl<O, T> BitField for BitBox<O, T> where O: BitOrder, T: BitStore, BitSlice<O, T>: BitField { fn load_le<U>(&self) -> U where U: BitStore { self.as_bitslice().load_le() } fn load_be<U>(&self) -> U where U: BitStore { self.as_bitslice().load_be() } fn store_le<U>(&mut self, value: U) where U: BitStore { self.as_mut_bitslice().store_le(value) } fn store_be<U>(&mut self, value: U) where U: BitStore { self.as_mut_bitslice().store_be(value) } } #[cfg(feature = "alloc")] impl<O, T> BitField for BitVec<O, T> where O: BitOrder, T: BitStore, BitSlice<O, T>: BitField { fn load_le<U>(&self) -> U where U: BitStore { self.as_bitslice().load_le() } fn load_be<U>(&self) -> U where U: BitStore { self.as_bitslice().load_be() } fn store_le<U>(&mut self, value: U) where U: BitStore { self.as_mut_bitslice().store_le(value) } fn store_be<U>(&mut self, value: U) where U: BitStore { self.as_mut_bitslice().store_be(value) } } /** Safely computes an LS-edge bitmask for a value of some length. The shift operators panic when the shift amount equals or exceeds the type width, but this module must be able to produce a mask for exactly the type width. This function correctly handles that case. # Parameters - `len`: The width in bits of the value stored in an element `T`. # Type Parameters - `T`: The element type for which the mask is computed. # Returns An LS-edge-aligned bitmask of `len` bits. All bits higher than the `len`th are zero. **/ #[inline] fn mask_for<T>(len: usize) -> T where T: BitStore { let len = len as u8; if len >= T::BITS { T::TRUE } else { !(T::TRUE << len) } } /** Resizes a value from one fundamental type to another. This function uses `usize` as the intermediate type (as it is the largest `BitStore` implementor on all supported targets), and either zero-extends or truncates the source value to be valid as the destination type. This is essentially a generic-aware version of the `as` operator. # Parameters - `value`: Any value to be resized. # Type Parameters - `T`: The source type of the value to be resized. - `U`: The destination type to which the value will be resized. # Returns The result of transforming `value as U`. Where `U` is wider than `T`, this zero-extends; where `U` is narrower, it truncates. **/ fn resize<T, U>(value: T) -> U where T: BitStore, U: BitStore { let mut out = U::FALSE; let bytes_t = mem::size_of::<T>(); let bytes_u = mem::size_of::<U>(); unsafe { /* On big-endian targets, the significant bytes of a value are in the high portion of its memory slot. Truncation reads only from the high bytes; extension writes only into the high bytes. Note: attributes are not currently supported on `if`-expressions, so this must use the form `if cfg!` instead. `cfg!` is a compile-time macro that expands to a constant `true` or `false` depending on the flag, so this has the net effect of becoming either `if true {} else {}` or `if false {} else {}`, eliminating the branch from actual codegen. */ if cfg!(target_endian = "big") { // Truncate by reading the high bytes of `value` into `out`. if bytes_t > bytes_u { ptr::copy_nonoverlapping( (&value as *const T as *const u8).add(bytes_t - bytes_u), &mut out as *mut U as *mut u8, bytes_u, ); } // Extend by writing `value` into the high bytes of `out`. else { ptr::copy_nonoverlapping( &value as *const T as *const u8, (&mut out as *mut U as *mut u8).add(bytes_u - bytes_t), bytes_t, ); } } /* On little-endian targets, the significant bytes of a value are in the low portion of its memory slot. Truncation and extension are both plain copies into the start of a zero-buffer, for the smaller width. */ else { ptr::copy_nonoverlapping( &value as *const T as *const u8, &mut out as *mut U as *mut u8, cmp::min(bytes_t, bytes_u), ); } } out } #[allow(clippy::inconsistent_digit_grouping)] #[cfg(test)] mod tests { use super::*; use crate::prelude::*; #[test] fn lsb0() { let mut bytes = [0u8; 16]; let bytes = bytes.bits_mut::<Lsb0>(); bytes[1 ..][.. 4].store_le(0x0Au8); assert_eq!(bytes[1 ..][.. 4].load_le::<u8>(), 0x0Au8); assert_eq!(bytes.as_slice()[0], 0b000_1010_0u8); bytes[1 ..][.. 4].store_be(0x05u8); assert_eq!(bytes[1 ..][.. 4].load_be::<u8>(), 0x05u8); assert_eq!(bytes.as_slice()[0], 0b000_0101_0u8); bytes[1 ..][.. 4].store_le(0u8); // expected byte pattern: 0x34 0x12 // bits: 0011_0100 __01_0010 // idx: 7654 3210 fedc ba98 let u16b = u16::from_ne_bytes(0x1234u16.to_le_bytes()); bytes[5 ..][.. 14].store_le(u16b); assert_eq!(bytes[5 ..][.. 14].load_le::<u16>(), 0x1234u16); assert_eq!( &bytes.as_slice()[.. 3], &[0b100_00000, 0b010_0011_0, 0b00000_01_0], // 210 a98 7654 3 dc b ); // the load/store orderings only affect the order of elements, not of // bits within the element. bytes[5 ..][.. 14].store_be(u16b); assert_eq!(bytes[5 ..][.. 14].load_be::<u16>(), 0x1234u16); assert_eq!( &bytes.as_slice()[.. 3], &[0b01_0_00000, 0b010_0011_0, 0b00000_100], // dc b a98 7654 3 210 ); let mut shorts = [0u16; 8]; let shorts = shorts.bits_mut::<Lsb0>(); shorts[3 ..][.. 12].store_le(0x0123u16); assert_eq!(shorts[3 ..][.. 12].load_le::<u16>(), 0x0123u16); assert_eq!(shorts.as_slice()[0], 0b0_0001_0010_0011_000u16); shorts[3 ..][.. 12].store_be(0x0123u16); assert_eq!(shorts[3 ..][.. 12].load_be::<u16>(), 0x0123u16); assert_eq!(shorts.as_slice()[0], 0b0_0001_0010_0011_000u16); let mut ints = [0u32; 4]; let ints = ints.bits_mut::<Lsb0>(); ints[1 ..][.. 28].store_le(0x0123_4567u32); assert_eq!(ints[1 ..][.. 28].load_le::<u32>(), 0x0123_4567u32); assert_eq!(ints.as_slice()[0], 0b000_0001_0010_0011_0100_0101_0110_0111_0u32); ints[1 ..][.. 28].store_be(0x0123_4567u32); assert_eq!(ints[1 ..][.. 28].load_be::<u32>(), 0x0123_4567u32); assert_eq!(ints.as_slice()[0], 0b000_0001_0010_0011_0100_0101_0110_0111_0u32); /* #[cfg(target_pointer_width = "64")] { let mut longs = [0u64; 2]; let longs = longs.bits_mut::<Lsb0>(); } */ } #[test] fn msb0() { let mut bytes = [0u8; 16]; let bytes = bytes.bits_mut::<Msb0>(); bytes[1 ..][.. 4].store_le(0x0Au8); assert_eq!(bytes[1 ..][.. 4].load_le::<u8>(), 0x0Au8); assert_eq!(bytes.as_slice()[0], 0b0_1010_000u8); bytes[1 ..][.. 4].store_be(0x05u8); assert_eq!(bytes[1 ..][.. 4].load_be::<u8>(), 0x05u8); assert_eq!(bytes.as_slice()[0], 0b0_0101_000u8); bytes[1 ..][.. 4].store_le(0u8); // expected byte pattern: 0x34 0x12 // bits: 0011_0100 __01_0010 // idx: 7654 3210 fedc ba98 let u16b = u16::from_ne_bytes(0x1234u16.to_le_bytes()); bytes[5 ..][.. 14].store_le(u16b); assert_eq!(bytes[5 ..][.. 14].load_le::<u16>(), 0x1234u16); assert_eq!( &bytes.as_slice()[.. 3], &[0b00000_100, 0b010_0011_0, 0b01_0_00000], // 210 a98 7654 3 dc b ); // the load/store orderings only affect the order of elements, not of // bits within the element. bytes[5 ..][.. 14].store_be(u16b); assert_eq!(bytes[5 ..][.. 14].load_be::<u16>(), 0x1234u16); assert_eq!( &bytes.as_slice()[.. 3], &[0b00000_01_0, 0b010_0011_0, 0b100_00000], // dc b a98 7654 3 210 ); let mut shorts = [0u16; 8]; let shorts = shorts.bits_mut::<Msb0>(); shorts[3 ..][.. 12].store_le(0x0123u16); assert_eq!(shorts[3 ..][.. 12].load_le::<u16>(), 0x0123u16); assert_eq!(shorts.as_slice()[0], 0b000_0001_0010_0011_0u16); shorts[3 ..][.. 12].store_be(0x0123u16); assert_eq!(shorts[3 ..][.. 12].load_be::<u16>(), 0x0123u16); assert_eq!(shorts.as_slice()[0], 0b000_0001_0010_0011_0u16); let mut ints = [0u32; 4]; let ints = ints.bits_mut::<Msb0>(); ints[1 ..][.. 28].store_le(0x0123_4567u32); assert_eq!(ints[1 ..][.. 28].load_le::<u32>(), 0x0123_4567u32); assert_eq!(ints.as_slice()[0], 0b0_0001_0010_0011_0100_0101_0110_0111_000u32); ints[1 ..][.. 28].store_be(0x0123_4567u32); assert_eq!(ints[1 ..][.. 28].load_be::<u32>(), 0x0123_4567u32); assert_eq!(ints.as_slice()[0], 0b0_0001_0010_0011_0100_0101_0110_0111_000u32); /* #[cfg(target_pointer_width = "64")] { let mut longs = [0u64; 2]; let longs = longs.bits_mut::<Msb0>(); } */ } } #[cfg(test)] mod permutation_tests;