1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
use crate::codec::UserError;
use crate::codec::UserError::*;
use crate::frame::{self, Frame, FrameSize};
use crate::hpack;

use bytes::{
    buf::{BufExt, BufMutExt},
    Buf, BufMut, BytesMut,
};
use std::pin::Pin;
use std::task::{Context, Poll};
use tokio::io::{AsyncRead, AsyncWrite};

use std::io::{self, Cursor};

// A macro to get around a method needing to borrow &mut self
macro_rules! limited_write_buf {
    ($self:expr) => {{
        let limit = $self.max_frame_size() + frame::HEADER_LEN;
        $self.buf.get_mut().limit(limit)
    }};
}

#[derive(Debug)]
pub struct FramedWrite<T, B> {
    /// Upstream `AsyncWrite`
    inner: T,

    /// HPACK encoder
    hpack: hpack::Encoder,

    /// Write buffer
    ///
    /// TODO: Should this be a ring buffer?
    buf: Cursor<BytesMut>,

    /// Next frame to encode
    next: Option<Next<B>>,

    /// Last data frame
    last_data_frame: Option<frame::Data<B>>,

    /// Max frame size, this is specified by the peer
    max_frame_size: FrameSize,
}

#[derive(Debug)]
enum Next<B> {
    Data(frame::Data<B>),
    Continuation(frame::Continuation),
}

/// Initialze the connection with this amount of write buffer.
///
/// The minimum MAX_FRAME_SIZE is 16kb, so always be able to send a HEADERS
/// frame that big.
const DEFAULT_BUFFER_CAPACITY: usize = 16 * 1_024;

/// Min buffer required to attempt to write a frame
const MIN_BUFFER_CAPACITY: usize = frame::HEADER_LEN + CHAIN_THRESHOLD;

/// Chain payloads bigger than this. The remote will never advertise a max frame
/// size less than this (well, the spec says the max frame size can't be less
/// than 16kb, so not even close).
const CHAIN_THRESHOLD: usize = 256;

// TODO: Make generic
impl<T, B> FramedWrite<T, B>
where
    T: AsyncWrite + Unpin,
    B: Buf,
{
    pub fn new(inner: T) -> FramedWrite<T, B> {
        FramedWrite {
            inner,
            hpack: hpack::Encoder::default(),
            buf: Cursor::new(BytesMut::with_capacity(DEFAULT_BUFFER_CAPACITY)),
            next: None,
            last_data_frame: None,
            max_frame_size: frame::DEFAULT_MAX_FRAME_SIZE,
        }
    }

    /// Returns `Ready` when `send` is able to accept a frame
    ///
    /// Calling this function may result in the current contents of the buffer
    /// to be flushed to `T`.
    pub fn poll_ready(&mut self, cx: &mut Context) -> Poll<io::Result<()>> {
        if !self.has_capacity() {
            // Try flushing
            ready!(self.flush(cx))?;

            if !self.has_capacity() {
                return Poll::Pending;
            }
        }

        Poll::Ready(Ok(()))
    }

    /// Buffer a frame.
    ///
    /// `poll_ready` must be called first to ensure that a frame may be
    /// accepted.
    pub fn buffer(&mut self, item: Frame<B>) -> Result<(), UserError> {
        // Ensure that we have enough capacity to accept the write.
        assert!(self.has_capacity());
        let span = tracing::trace_span!("FramedWrite::buffer", frame = ?item);
        let _e = span.enter();

        tracing::debug!(frame = ?item, "send");

        match item {
            Frame::Data(mut v) => {
                // Ensure that the payload is not greater than the max frame.
                let len = v.payload().remaining();

                if len > self.max_frame_size() {
                    return Err(PayloadTooBig);
                }

                if len >= CHAIN_THRESHOLD {
                    let head = v.head();

                    // Encode the frame head to the buffer
                    head.encode(len, self.buf.get_mut());

                    // Save the data frame
                    self.next = Some(Next::Data(v));
                } else {
                    v.encode_chunk(self.buf.get_mut());

                    // The chunk has been fully encoded, so there is no need to
                    // keep it around
                    assert_eq!(v.payload().remaining(), 0, "chunk not fully encoded");

                    // Save off the last frame...
                    self.last_data_frame = Some(v);
                }
            }
            Frame::Headers(v) => {
                let mut buf = limited_write_buf!(self);
                if let Some(continuation) = v.encode(&mut self.hpack, &mut buf) {
                    self.next = Some(Next::Continuation(continuation));
                }
            }
            Frame::PushPromise(v) => {
                let mut buf = limited_write_buf!(self);
                if let Some(continuation) = v.encode(&mut self.hpack, &mut buf) {
                    self.next = Some(Next::Continuation(continuation));
                }
            }
            Frame::Settings(v) => {
                v.encode(self.buf.get_mut());
                tracing::trace!(rem = self.buf.remaining(), "encoded settings");
            }
            Frame::GoAway(v) => {
                v.encode(self.buf.get_mut());
                tracing::trace!(rem = self.buf.remaining(), "encoded go_away");
            }
            Frame::Ping(v) => {
                v.encode(self.buf.get_mut());
                tracing::trace!(rem = self.buf.remaining(), "encoded ping");
            }
            Frame::WindowUpdate(v) => {
                v.encode(self.buf.get_mut());
                tracing::trace!(rem = self.buf.remaining(), "encoded window_update");
            }

            Frame::Priority(_) => {
                /*
                v.encode(self.buf.get_mut());
                tracing::trace!("encoded priority; rem={:?}", self.buf.remaining());
                */
                unimplemented!();
            }
            Frame::Reset(v) => {
                v.encode(self.buf.get_mut());
                tracing::trace!(rem = self.buf.remaining(), "encoded reset");
            }
        }

        Ok(())
    }

    /// Flush buffered data to the wire
    pub fn flush(&mut self, cx: &mut Context) -> Poll<io::Result<()>> {
        let span = tracing::trace_span!("FramedWrite::flush");
        let _e = span.enter();

        loop {
            while !self.is_empty() {
                match self.next {
                    Some(Next::Data(ref mut frame)) => {
                        tracing::trace!(queued_data_frame = true);
                        let mut buf = (&mut self.buf).chain(frame.payload_mut());
                        ready!(Pin::new(&mut self.inner).poll_write_buf(cx, &mut buf))?;
                    }
                    _ => {
                        tracing::trace!(queued_data_frame = false);
                        ready!(Pin::new(&mut self.inner).poll_write_buf(cx, &mut self.buf))?;
                    }
                }
            }

            // Clear internal buffer
            self.buf.set_position(0);
            self.buf.get_mut().clear();

            // The data frame has been written, so unset it
            match self.next.take() {
                Some(Next::Data(frame)) => {
                    self.last_data_frame = Some(frame);
                    debug_assert!(self.is_empty());
                    break;
                }
                Some(Next::Continuation(frame)) => {
                    // Buffer the continuation frame, then try to write again
                    let mut buf = limited_write_buf!(self);
                    if let Some(continuation) = frame.encode(&mut self.hpack, &mut buf) {
                        // We previously had a CONTINUATION, and after encoding
                        // it, we got *another* one? Let's just double check
                        // that at least some progress is being made...
                        if self.buf.get_ref().len() == frame::HEADER_LEN {
                            // If *only* the CONTINUATION frame header was
                            // written, and *no* header fields, we're stuck
                            // in a loop...
                            panic!("CONTINUATION frame write loop; header value too big to encode");
                        }

                        self.next = Some(Next::Continuation(continuation));
                    }
                }
                None => {
                    break;
                }
            }
        }

        tracing::trace!("flushing buffer");
        // Flush the upstream
        ready!(Pin::new(&mut self.inner).poll_flush(cx))?;

        Poll::Ready(Ok(()))
    }

    /// Close the codec
    pub fn shutdown(&mut self, cx: &mut Context) -> Poll<io::Result<()>> {
        ready!(self.flush(cx))?;
        Pin::new(&mut self.inner).poll_shutdown(cx)
    }

    fn has_capacity(&self) -> bool {
        self.next.is_none() && self.buf.get_ref().remaining_mut() >= MIN_BUFFER_CAPACITY
    }

    fn is_empty(&self) -> bool {
        match self.next {
            Some(Next::Data(ref frame)) => !frame.payload().has_remaining(),
            _ => !self.buf.has_remaining(),
        }
    }
}

impl<T, B> FramedWrite<T, B> {
    /// Returns the max frame size that can be sent
    pub fn max_frame_size(&self) -> usize {
        self.max_frame_size as usize
    }

    /// Set the peer's max frame size.
    pub fn set_max_frame_size(&mut self, val: usize) {
        assert!(val <= frame::MAX_MAX_FRAME_SIZE as usize);
        self.max_frame_size = val as FrameSize;
    }

    /// Set the peer's header table size.
    pub fn set_header_table_size(&mut self, val: usize) {
        self.hpack.update_max_size(val);
    }

    /// Retrieve the last data frame that has been sent
    pub fn take_last_data_frame(&mut self) -> Option<frame::Data<B>> {
        self.last_data_frame.take()
    }

    pub fn get_mut(&mut self) -> &mut T {
        &mut self.inner
    }
}

impl<T: AsyncRead + Unpin, B> AsyncRead for FramedWrite<T, B> {
    unsafe fn prepare_uninitialized_buffer(&self, buf: &mut [std::mem::MaybeUninit<u8>]) -> bool {
        self.inner.prepare_uninitialized_buffer(buf)
    }

    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.inner).poll_read(cx, buf)
    }

    fn poll_read_buf<Buf: BufMut>(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut Buf,
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.inner).poll_read_buf(cx, buf)
    }
}

// We never project the Pin to `B`.
impl<T: Unpin, B> Unpin for FramedWrite<T, B> {}

#[cfg(feature = "unstable")]
mod unstable {
    use super::*;

    impl<T, B> FramedWrite<T, B> {
        pub fn get_ref(&self) -> &T {
            &self.inner
        }
    }
}