1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//! This module contains the parallel iterator types for double-ended queues
//! (`VecDeque<T>`). You will rarely need to interact with it directly
//! unless you have need to name one of the iterator types.

use std::collections::VecDeque;
use std::ops::{Range, RangeBounds};

use crate::iter::plumbing::*;
use crate::iter::*;
use crate::math::simplify_range;

use crate::slice;
use crate::vec;

/// Parallel iterator over a double-ended queue
#[derive(Debug, Clone)]
pub struct IntoIter<T: Send> {
    inner: vec::IntoIter<T>,
}

impl<T: Send> IntoParallelIterator for VecDeque<T> {
    type Item = T;
    type Iter = IntoIter<T>;

    fn into_par_iter(self) -> Self::Iter {
        // NOTE: requires data movement if the deque doesn't start at offset 0.
        let inner = Vec::from(self).into_par_iter();
        IntoIter { inner }
    }
}

delegate_indexed_iterator! {
    IntoIter<T> => T,
    impl<T: Send>
}

/// Parallel iterator over an immutable reference to a double-ended queue
#[derive(Debug)]
pub struct Iter<'a, T: Sync> {
    inner: Chain<slice::Iter<'a, T>, slice::Iter<'a, T>>,
}

impl<'a, T: Sync> Clone for Iter<'a, T> {
    fn clone(&self) -> Self {
        Iter {
            inner: self.inner.clone(),
        }
    }
}

impl<'a, T: Sync> IntoParallelIterator for &'a VecDeque<T> {
    type Item = &'a T;
    type Iter = Iter<'a, T>;

    fn into_par_iter(self) -> Self::Iter {
        let (a, b) = self.as_slices();
        Iter {
            inner: a.into_par_iter().chain(b),
        }
    }
}

delegate_indexed_iterator! {
    Iter<'a, T> => &'a T,
    impl<'a, T: Sync + 'a>
}

/// Parallel iterator over a mutable reference to a double-ended queue
#[derive(Debug)]
pub struct IterMut<'a, T: Send> {
    inner: Chain<slice::IterMut<'a, T>, slice::IterMut<'a, T>>,
}

impl<'a, T: Send> IntoParallelIterator for &'a mut VecDeque<T> {
    type Item = &'a mut T;
    type Iter = IterMut<'a, T>;

    fn into_par_iter(self) -> Self::Iter {
        let (a, b) = self.as_mut_slices();
        IterMut {
            inner: a.into_par_iter().chain(b),
        }
    }
}

delegate_indexed_iterator! {
    IterMut<'a, T> => &'a mut T,
    impl<'a, T: Send + 'a>
}

/// Draining parallel iterator that moves a range out of a double-ended queue,
/// but keeps the total capacity.
#[derive(Debug)]
pub struct Drain<'a, T: Send> {
    deque: &'a mut VecDeque<T>,
    range: Range<usize>,
    orig_len: usize,
}

impl<'a, T: Send> ParallelDrainRange<usize> for &'a mut VecDeque<T> {
    type Iter = Drain<'a, T>;
    type Item = T;

    fn par_drain<R: RangeBounds<usize>>(self, range: R) -> Self::Iter {
        Drain {
            orig_len: self.len(),
            range: simplify_range(range, self.len()),
            deque: self,
        }
    }
}

impl<'a, T: Send> ParallelIterator for Drain<'a, T> {
    type Item = T;

    fn drive_unindexed<C>(self, consumer: C) -> C::Result
    where
        C: UnindexedConsumer<Self::Item>,
    {
        bridge(self, consumer)
    }

    fn opt_len(&self) -> Option<usize> {
        Some(self.len())
    }
}

impl<'a, T: Send> IndexedParallelIterator for Drain<'a, T> {
    fn drive<C>(self, consumer: C) -> C::Result
    where
        C: Consumer<Self::Item>,
    {
        bridge(self, consumer)
    }

    fn len(&self) -> usize {
        self.range.len()
    }

    fn with_producer<CB>(self, callback: CB) -> CB::Output
    where
        CB: ProducerCallback<Self::Item>,
    {
        // NOTE: requires data movement if the deque doesn't start at offset 0.
        super::DrainGuard::new(self.deque)
            .par_drain(self.range.clone())
            .with_producer(callback)
    }
}

impl<'a, T: Send> Drop for Drain<'a, T> {
    fn drop(&mut self) {
        if self.deque.len() != self.orig_len - self.range.len() {
            // We must not have produced, so just call a normal drain to remove the items.
            assert_eq!(self.deque.len(), self.orig_len);
            self.deque.drain(self.range.clone());
        }
    }
}