1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Multi-precision integers.
//!
//! # Modular Arithmetic.
//!
//! Modular arithmetic is done in finite commutative rings ℤ/mℤ for some
//! modulus *m*. We work in finite commutative rings instead of finite fields
//! because the RSA public modulus *n* is not prime, which means ℤ/nℤ contains
//! nonzero elements that have no multiplicative inverse, so ℤ/nℤ is not a
//! finite field.
//!
//! In some calculations we need to deal with multiple rings at once. For
//! example, RSA private key operations operate in the rings ℤ/nℤ, ℤ/pℤ, and
//! ℤ/qℤ. Types and functions dealing with such rings are all parameterized
//! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by
//! multiplying an element of ℤ/pℤ by an element of ℤ/qℤ modulo q. This follows
//! the "unit" pattern described in [Static checking of units in Servo].
//!
//! `Elem` also uses the static unit checking pattern to statically track the
//! Montgomery factors that need to be canceled out in each value using it's
//! `E` parameter.
//!
//! [Static checking of units in Servo]:
//!     https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/

use crate::{
    arithmetic::montgomery::*,
    bits, bssl, c, error,
    limb::{self, Limb, LimbMask, LIMB_BITS, LIMB_BYTES},
};
use alloc::{borrow::ToOwned as _, boxed::Box, vec, vec::Vec};
use core::{
    marker::PhantomData,
    ops::{Deref, DerefMut},
};
use untrusted;

pub unsafe trait Prime {}

struct Width<M> {
    num_limbs: usize,

    /// The modulus *m* that the width originated from.
    m: PhantomData<M>,
}

/// All `BoxedLimbs<M>` are stored in the same number of limbs.
struct BoxedLimbs<M> {
    limbs: Box<[Limb]>,

    /// The modulus *m* that determines the size of `limbx`.
    m: PhantomData<M>,
}

impl<M> Deref for BoxedLimbs<M> {
    type Target = [Limb];
    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.limbs
    }
}

impl<M> DerefMut for BoxedLimbs<M> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.limbs
    }
}

// TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925
// is resolved or restrict `M: Clone`.
impl<M> Clone for BoxedLimbs<M> {
    fn clone(&self) -> Self {
        Self {
            limbs: self.limbs.clone(),
            m: self.m.clone(),
        }
    }
}

impl<M> BoxedLimbs<M> {
    fn positive_minimal_width_from_be_bytes(
        input: untrusted::Input,
    ) -> Result<Self, error::KeyRejected> {
        // Reject leading zeros. Also reject the value zero ([0]) because zero
        // isn't positive.
        if untrusted::Reader::new(input).peek(0) {
            return Err(error::KeyRejected::invalid_encoding());
        }
        let num_limbs = (input.len() + LIMB_BYTES - 1) / LIMB_BYTES;
        let mut r = Self::zero(Width {
            num_limbs,
            m: PhantomData,
        });
        limb::parse_big_endian_and_pad_consttime(input, &mut r)
            .map_err(|error::Unspecified| error::KeyRejected::unexpected_error())?;
        Ok(r)
    }

    fn minimal_width_from_unpadded(limbs: &[Limb]) -> Self {
        debug_assert_ne!(limbs.last(), Some(&0));
        Self {
            limbs: limbs.to_owned().into_boxed_slice(),
            m: PhantomData,
        }
    }

    fn from_be_bytes_padded_less_than(
        input: untrusted::Input,
        m: &Modulus<M>,
    ) -> Result<Self, error::Unspecified> {
        let mut r = Self::zero(m.width());
        limb::parse_big_endian_and_pad_consttime(input, &mut r)?;
        if limb::limbs_less_than_limbs_consttime(&r, &m.limbs) != LimbMask::True {
            return Err(error::Unspecified);
        }
        Ok(r)
    }

    #[inline]
    fn is_zero(&self) -> bool {
        limb::limbs_are_zero_constant_time(&self.limbs) == LimbMask::True
    }

    fn zero(width: Width<M>) -> Self {
        Self {
            limbs: vec![0; width.num_limbs].to_owned().into_boxed_slice(),
            m: PhantomData,
        }
    }

    fn width(&self) -> Width<M> {
        Width {
            num_limbs: self.limbs.len(),
            m: PhantomData,
        }
    }
}

/// A modulus *s* that is smaller than another modulus *l* so every element of
/// ℤ/sℤ is also an element of ℤ/lℤ.
pub unsafe trait SmallerModulus<L> {}

/// A modulus *s* where s < l < 2*s for the given larger modulus *l*. This is
/// the precondition for reduction by conditional subtraction,
/// `elem_reduce_once()`.
pub unsafe trait SlightlySmallerModulus<L>: SmallerModulus<L> {}

/// A modulus *s* where √l <= s < l for the given larger modulus *l*. This is
/// the precondition for the more general Montgomery reduction from ℤ/lℤ to
/// ℤ/sℤ.
pub unsafe trait NotMuchSmallerModulus<L>: SmallerModulus<L> {}

pub unsafe trait PublicModulus {}

/// The x86 implementation of `GFp_bn_mul_mont`, at least, requires at least 4
/// limbs. For a long time we have required 4 limbs for all targets, though
/// this may be unnecessary. TODO: Replace this with
/// `n.len() < 256 / LIMB_BITS` so that 32-bit and 64-bit platforms behave the
/// same.
pub const MODULUS_MIN_LIMBS: usize = 4;

pub const MODULUS_MAX_LIMBS: usize = 8192 / LIMB_BITS;

/// The modulus *m* for a ring ℤ/mℤ, along with the precomputed values needed
/// for efficient Montgomery multiplication modulo *m*. The value must be odd
/// and larger than 2. The larger-than-1 requirement is imposed, at least, by
/// the modular inversion code.
pub struct Modulus<M> {
    limbs: BoxedLimbs<M>, // Also `value >= 3`.

    // n0 * N == -1 (mod r).
    //
    // r == 2**(N0_LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This
    // ensures that we can do integer division by |r| by simply ignoring
    // `N0_LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by
    // just looking at the lowest `N0_LIMBS_USED` limbs. This is what makes
    // Montgomery multiplication efficient.
    //
    // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
    // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
    // multi-limb Montgomery multiplication of a * b (mod n), given the
    // unreduced product t == a * b, we repeatedly calculate:
    //
    //    t1 := t % r         |t1| is |t|'s lowest limb (see previous paragraph).
    //    t2 := t1*n0*n
    //    t3 := t + t2
    //    t := t3 / r         copy all limbs of |t3| except the lowest to |t|.
    //
    // In the last step, it would only make sense to ignore the lowest limb of
    // |t3| if it were zero. The middle steps ensure that this is the case:
    //
    //                            t3 ==  0 (mod r)
    //                        t + t2 ==  0 (mod r)
    //                   t + t1*n0*n ==  0 (mod r)
    //                       t1*n0*n == -t (mod r)
    //                        t*n0*n == -t (mod r)
    //                          n0*n == -1 (mod r)
    //                            n0 == -1/n (mod r)
    //
    // Thus, in each iteration of the loop, we multiply by the constant factor
    // n0, the negative inverse of n (mod r).
    //
    // TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the
    // ones that don't, we could use a shorter `R` value and use faster `Limb`
    // calculations instead of double-precision `u64` calculations.
    n0: N0,

    oneRR: One<M, RR>,
}

impl<M: PublicModulus> core::fmt::Debug for Modulus<M> {
    fn fmt(&self, fmt: &mut ::core::fmt::Formatter) -> Result<(), ::core::fmt::Error> {
        fmt.debug_struct("Modulus")
            // TODO: Print modulus value.
            .finish()
    }
}

impl<M> Modulus<M> {
    pub fn from_be_bytes_with_bit_length(
        input: untrusted::Input,
    ) -> Result<(Self, bits::BitLength), error::KeyRejected> {
        let limbs = BoxedLimbs::positive_minimal_width_from_be_bytes(input)?;
        Self::from_boxed_limbs(limbs)
    }

    pub fn from_nonnegative_with_bit_length(
        n: Nonnegative,
    ) -> Result<(Self, bits::BitLength), error::KeyRejected> {
        let limbs = BoxedLimbs {
            limbs: n.limbs.into_boxed_slice(),
            m: PhantomData,
        };
        Self::from_boxed_limbs(limbs)
    }

    fn from_boxed_limbs(n: BoxedLimbs<M>) -> Result<(Self, bits::BitLength), error::KeyRejected> {
        if n.len() > MODULUS_MAX_LIMBS {
            return Err(error::KeyRejected::too_large());
        }
        if n.len() < MODULUS_MIN_LIMBS {
            return Err(error::KeyRejected::unexpected_error());
        }
        if limb::limbs_are_even_constant_time(&n) != LimbMask::False {
            return Err(error::KeyRejected::invalid_component());
        }
        if limb::limbs_less_than_limb_constant_time(&n, 3) != LimbMask::False {
            return Err(error::KeyRejected::unexpected_error());
        }

        // n_mod_r = n % r. As explained in the documentation for `n0`, this is
        // done by taking the lowest `N0_LIMBS_USED` limbs of `n`.
        let n0 = {
            extern "C" {
                fn GFp_bn_neg_inv_mod_r_u64(n: u64) -> u64;
            }

            // XXX: u64::from isn't guaranteed to be constant time.
            let mut n_mod_r: u64 = u64::from(n[0]);

            if N0_LIMBS_USED == 2 {
                // XXX: If we use `<< LIMB_BITS` here then 64-bit builds
                // fail to compile because of `deny(exceeding_bitshifts)`.
                debug_assert_eq!(LIMB_BITS, 32);
                n_mod_r |= u64::from(n[1]) << 32;
            }
            N0::from(unsafe { GFp_bn_neg_inv_mod_r_u64(n_mod_r) })
        };

        let bits = limb::limbs_minimal_bits(&n.limbs);
        let oneRR = {
            let partial = PartialModulus {
                limbs: &n.limbs,
                n0: n0.clone(),
                m: PhantomData,
            };

            One::newRR(&partial, bits)
        };

        Ok((
            Self {
                limbs: n,
                n0,
                oneRR,
            },
            bits,
        ))
    }

    #[inline]
    fn width(&self) -> Width<M> {
        self.limbs.width()
    }

    fn zero<E>(&self) -> Elem<M, E> {
        Elem {
            limbs: BoxedLimbs::zero(self.width()),
            encoding: PhantomData,
        }
    }

    // TODO: Get rid of this
    fn one(&self) -> Elem<M, Unencoded> {
        let mut r = self.zero();
        r.limbs[0] = 1;
        r
    }

    pub fn oneRR(&self) -> &One<M, RR> {
        &self.oneRR
    }

    pub fn to_elem<L>(&self, l: &Modulus<L>) -> Elem<L, Unencoded>
    where
        M: SmallerModulus<L>,
    {
        // TODO: Encode this assertion into the `where` above.
        assert_eq!(self.width().num_limbs, l.width().num_limbs);
        let limbs = self.limbs.clone();
        Elem {
            limbs: BoxedLimbs {
                limbs: limbs.limbs,
                m: PhantomData,
            },
            encoding: PhantomData,
        }
    }

    fn as_partial(&self) -> PartialModulus<M> {
        PartialModulus {
            limbs: &self.limbs,
            n0: self.n0.clone(),
            m: PhantomData,
        }
    }
}

struct PartialModulus<'a, M> {
    limbs: &'a [Limb],
    n0: N0,
    m: PhantomData<M>,
}

impl<M> PartialModulus<'_, M> {
    // TODO: XXX Avoid duplication with `Modulus`.
    fn zero(&self) -> Elem<M, R> {
        let width = Width {
            num_limbs: self.limbs.len(),
            m: PhantomData,
        };
        Elem {
            limbs: BoxedLimbs::zero(width),
            encoding: PhantomData,
        }
    }
}

/// Elements of ℤ/mℤ for some modulus *m*.
//
// Defaulting `E` to `Unencoded` is a convenience for callers from outside this
// submodule. However, for maximum clarity, we always explicitly use
// `Unencoded` within the `bigint` submodule.
pub struct Elem<M, E = Unencoded> {
    limbs: BoxedLimbs<M>,

    /// The number of Montgomery factors that need to be canceled out from
    /// `value` to get the actual value.
    encoding: PhantomData<E>,
}

// TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925
// is resolved or restrict `M: Clone` and `E: Clone`.
impl<M, E> Clone for Elem<M, E> {
    fn clone(&self) -> Self {
        Self {
            limbs: self.limbs.clone(),
            encoding: self.encoding.clone(),
        }
    }
}

impl<M, E> Elem<M, E> {
    #[inline]
    pub fn is_zero(&self) -> bool {
        self.limbs.is_zero()
    }
}

impl<M, E: ReductionEncoding> Elem<M, E> {
    fn decode_once(self, m: &Modulus<M>) -> Elem<M, <E as ReductionEncoding>::Output> {
        // A multiplication isn't required since we're multiplying by the
        // unencoded value one (1); only a Montgomery reduction is needed.
        // However the only non-multiplication Montgomery reduction function we
        // have requires the input to be large, so we avoid using it here.
        let mut limbs = self.limbs;
        let num_limbs = m.width().num_limbs;
        let mut one = [0; MODULUS_MAX_LIMBS];
        one[0] = 1;
        let one = &one[..num_limbs]; // assert!(num_limbs <= MODULUS_MAX_LIMBS);
        limbs_mont_mul(&mut limbs, &one, &m.limbs, &m.n0);
        Elem {
            limbs,
            encoding: PhantomData,
        }
    }
}

impl<M> Elem<M, R> {
    #[inline]
    pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> {
        self.decode_once(m)
    }
}

impl<M> Elem<M, Unencoded> {
    pub fn from_be_bytes_padded(
        input: untrusted::Input,
        m: &Modulus<M>,
    ) -> Result<Self, error::Unspecified> {
        Ok(Elem {
            limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?,
            encoding: PhantomData,
        })
    }

    #[inline]
    pub fn fill_be_bytes(&self, out: &mut [u8]) {
        // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
        limb::big_endian_from_limbs(&self.limbs, out)
    }

    pub fn into_modulus<MM>(self) -> Result<Modulus<MM>, error::KeyRejected> {
        let (m, _bits) =
            Modulus::from_boxed_limbs(BoxedLimbs::minimal_width_from_unpadded(&self.limbs))?;
        Ok(m)
    }

    fn is_one(&self) -> bool {
        limb::limbs_equal_limb_constant_time(&self.limbs, 1) == LimbMask::True
    }
}

pub fn elem_mul<M, AF, BF>(
    a: &Elem<M, AF>,
    b: Elem<M, BF>,
    m: &Modulus<M>,
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
where
    (AF, BF): ProductEncoding,
{
    elem_mul_(a, b, &m.as_partial())
}

fn elem_mul_<M, AF, BF>(
    a: &Elem<M, AF>,
    mut b: Elem<M, BF>,
    m: &PartialModulus<M>,
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
where
    (AF, BF): ProductEncoding,
{
    limbs_mont_mul(&mut b.limbs, &a.limbs, &m.limbs, &m.n0);
    Elem {
        limbs: b.limbs,
        encoding: PhantomData,
    }
}

fn elem_mul_by_2<M, AF>(a: &mut Elem<M, AF>, m: &PartialModulus<M>) {
    extern "C" {
        fn LIMBS_shl_mod(r: *mut Limb, a: *const Limb, m: *const Limb, num_limbs: c::size_t);
    }
    unsafe {
        LIMBS_shl_mod(
            a.limbs.as_mut_ptr(),
            a.limbs.as_ptr(),
            m.limbs.as_ptr(),
            m.limbs.len(),
        );
    }
}

pub fn elem_reduced_once<Larger, Smaller: SlightlySmallerModulus<Larger>>(
    a: &Elem<Larger, Unencoded>,
    m: &Modulus<Smaller>,
) -> Elem<Smaller, Unencoded> {
    let mut r = a.limbs.clone();
    assert!(r.len() <= m.limbs.len());
    limb::limbs_reduce_once_constant_time(&mut r, &m.limbs);
    Elem {
        limbs: BoxedLimbs {
            limbs: r.limbs,
            m: PhantomData,
        },
        encoding: PhantomData,
    }
}

#[inline]
pub fn elem_reduced<Larger, Smaller: NotMuchSmallerModulus<Larger>>(
    a: &Elem<Larger, Unencoded>,
    m: &Modulus<Smaller>,
) -> Result<Elem<Smaller, RInverse>, error::Unspecified> {
    extern "C" {
        fn GFp_bn_from_montgomery_in_place(
            r: *mut Limb,
            num_r: c::size_t,
            a: *mut Limb,
            num_a: c::size_t,
            n: *const Limb,
            num_n: c::size_t,
            n0: &N0,
        ) -> bssl::Result;
    }

    let mut tmp = [0; MODULUS_MAX_LIMBS];
    let tmp = &mut tmp[..a.limbs.len()];
    tmp.copy_from_slice(&a.limbs);

    let mut r = m.zero();
    Result::from(unsafe {
        GFp_bn_from_montgomery_in_place(
            r.limbs.as_mut_ptr(),
            r.limbs.len(),
            tmp.as_mut_ptr(),
            tmp.len(),
            m.limbs.as_ptr(),
            m.limbs.len(),
            &m.n0,
        )
    })?;
    Ok(r)
}

fn elem_squared<M, E>(
    mut a: Elem<M, E>,
    m: &PartialModulus<M>,
) -> Elem<M, <(E, E) as ProductEncoding>::Output>
where
    (E, E): ProductEncoding,
{
    limbs_mont_square(&mut a.limbs, &m.limbs, &m.n0);
    Elem {
        limbs: a.limbs,
        encoding: PhantomData,
    }
}

pub fn elem_widen<Larger, Smaller: SmallerModulus<Larger>>(
    a: Elem<Smaller, Unencoded>,
    m: &Modulus<Larger>,
) -> Elem<Larger, Unencoded> {
    let mut r = m.zero();
    r.limbs[..a.limbs.len()].copy_from_slice(&a.limbs);
    r
}

// TODO: Document why this works for all Montgomery factors.
pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
    extern "C" {
        // `r` and `a` may alias.
        fn LIMBS_add_mod(
            r: *mut Limb,
            a: *const Limb,
            b: *const Limb,
            m: *const Limb,
            num_limbs: c::size_t,
        );
    }
    unsafe {
        LIMBS_add_mod(
            a.limbs.as_mut_ptr(),
            a.limbs.as_ptr(),
            b.limbs.as_ptr(),
            m.limbs.as_ptr(),
            m.limbs.len(),
        )
    }
    a
}

// TODO: Document why this works for all Montgomery factors.
pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
    extern "C" {
        // `r` and `a` may alias.
        fn LIMBS_sub_mod(
            r: *mut Limb,
            a: *const Limb,
            b: *const Limb,
            m: *const Limb,
            num_limbs: c::size_t,
        );
    }
    unsafe {
        LIMBS_sub_mod(
            a.limbs.as_mut_ptr(),
            a.limbs.as_ptr(),
            b.limbs.as_ptr(),
            m.limbs.as_ptr(),
            m.limbs.len(),
        );
    }
    a
}

// The value 1, Montgomery-encoded some number of times.
pub struct One<M, E>(Elem<M, E>);

impl<M> One<M, RR> {
    // Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of
    // 2**LIMB_BITS such that R > m.
    //
    // Even though the assembly on some 32-bit platforms works with 64-bit
    // values, using `LIMB_BITS` here, rather than `N0_LIMBS_USED * LIMB_BITS`,
    // is correct because R**2 will still be a multiple of the latter as
    // `N0_LIMBS_USED` is either one or two.
    fn newRR(m: &PartialModulus<M>, m_bits: bits::BitLength) -> Self {
        let m_bits = m_bits.as_usize_bits();
        let r = (m_bits + (LIMB_BITS - 1)) / LIMB_BITS * LIMB_BITS;

        // base = 2**(lg m - 1).
        let bit = m_bits - 1;
        let mut base = m.zero();
        base.limbs[bit / LIMB_BITS] = 1 << (bit % LIMB_BITS);

        // Double `base` so that base == R == 2**r (mod m). For normal moduli
        // that have the high bit of the highest limb set, this requires one
        // doubling. Unusual moduli require more doublings but we are less
        // concerned about the performance of those.
        //
        // Then double `base` again so that base == 2*R (mod n), i.e. `2` in
        // Montgomery form (`elem_exp_vartime_()` requires the base to be in
        // Montgomery form). Then compute
        // RR = R**2 == base**r == R**r == (2**r)**r (mod n).
        //
        // Take advantage of the fact that `elem_mul_by_2` is faster than
        // `elem_squared` by replacing some of the early squarings with shifts.
        // TODO: Benchmark shift vs. squaring performance to determine the
        // optimal value of `lg_base`.
        let lg_base = 2usize; // Shifts vs. squaring trade-off.
        debug_assert_eq!(lg_base.count_ones(), 1); // Must 2**n for n >= 0.
        let shifts = r - bit + lg_base;
        let exponent = (r / lg_base) as u64;
        for _ in 0..shifts {
            elem_mul_by_2(&mut base, m)
        }
        let RR = elem_exp_vartime_(base, exponent, m);

        Self(Elem {
            limbs: RR.limbs,
            encoding: PhantomData, // PhantomData<RR>
        })
    }
}

impl<M, E> AsRef<Elem<M, E>> for One<M, E> {
    fn as_ref(&self) -> &Elem<M, E> {
        &self.0
    }
}

/// A non-secret odd positive value in the range
/// [3, PUBLIC_EXPONENT_MAX_VALUE].
#[derive(Clone, Copy, Debug)]
pub struct PublicExponent(u64);

impl PublicExponent {
    pub fn from_be_bytes(
        input: untrusted::Input,
        min_value: u64,
    ) -> Result<Self, error::KeyRejected> {
        if input.len() > 5 {
            return Err(error::KeyRejected::too_large());
        }
        let value = input.read_all(error::KeyRejected::invalid_encoding(), |input| {
            // The exponent can't be zero and it can't be prefixed with
            // zero-valued bytes.
            if input.peek(0) {
                return Err(error::KeyRejected::invalid_encoding());
            }
            let mut value = 0u64;
            loop {
                let byte = input
                    .read_byte()
                    .map_err(|untrusted::EndOfInput| error::KeyRejected::invalid_encoding())?;
                value = (value << 8) | u64::from(byte);
                if input.at_end() {
                    return Ok(value);
                }
            }
        })?;

        // Step 2 / Step b. NIST SP800-89 defers to FIPS 186-3, which requires
        // `e >= 65537`. We enforce this when signing, but are more flexible in
        // verification, for compatibility. Only small public exponents are
        // supported.
        if value & 1 != 1 {
            return Err(error::KeyRejected::invalid_component());
        }
        debug_assert!(min_value & 1 == 1);
        debug_assert!(min_value <= PUBLIC_EXPONENT_MAX_VALUE);
        if min_value < 3 {
            return Err(error::KeyRejected::invalid_component());
        }
        if value < min_value {
            return Err(error::KeyRejected::too_small());
        }
        if value > PUBLIC_EXPONENT_MAX_VALUE {
            return Err(error::KeyRejected::too_large());
        }

        Ok(Self(value))
    }
}

// This limit was chosen to bound the performance of the simple
// exponentiation-by-squaring implementation in `elem_exp_vartime`. In
// particular, it helps mitigate theoretical resource exhaustion attacks. 33
// bits was chosen as the limit based on the recommendations in [1] and
// [2]. Windows CryptoAPI (at least older versions) doesn't support values
// larger than 32 bits [3], so it is unlikely that exponents larger than 32
// bits are being used for anything Windows commonly does.
//
// [1] https://www.imperialviolet.org/2012/03/16/rsae.html
// [2] https://www.imperialviolet.org/2012/03/17/rsados.html
// [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
const PUBLIC_EXPONENT_MAX_VALUE: u64 = (1u64 << 33) - 1;

/// Calculates base**exponent (mod m).
// TODO: The test coverage needs to be expanded, e.g. test with the largest
// accepted exponent and with the most common values of 65537 and 3.
pub fn elem_exp_vartime<M>(
    base: Elem<M, Unencoded>,
    PublicExponent(exponent): PublicExponent,
    m: &Modulus<M>,
) -> Elem<M, R> {
    let base = elem_mul(m.oneRR().as_ref(), base, &m);
    elem_exp_vartime_(base, exponent, &m.as_partial())
}

/// Calculates base**exponent (mod m).
fn elem_exp_vartime_<M>(base: Elem<M, R>, exponent: u64, m: &PartialModulus<M>) -> Elem<M, R> {
    // Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time
    // square-and-multiply that scans the exponent from the most significant
    // bit to the least significant bit (left-to-right). Left-to-right requires
    // less storage compared to right-to-left scanning, at the cost of needing
    // to compute `exponent.leading_zeros()`, which we assume to be cheap.
    //
    // During RSA public key operations the exponent is almost always either 65537
    // (0b10000000000000001) or 3 (0b11), both of which have a Hamming weight
    // of 2. During Montgomery setup the exponent is almost always a power of two,
    // with Hamming weight 1. As explained in [Knuth], exponentiation by squaring
    // is the most efficient algorithm when the Hamming weight is 2 or less. It
    // isn't the most efficient for all other, uncommon, exponent values but any
    // suboptimality is bounded by `PUBLIC_EXPONENT_MAX_VALUE`.
    //
    // This implementation is slightly simplified by taking advantage of the
    // fact that we require the exponent to be a positive integer.
    //
    // [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical
    //          Algorithms (3rd Edition), Section 4.6.3.
    assert!(exponent >= 1);
    assert!(exponent <= PUBLIC_EXPONENT_MAX_VALUE);
    let mut acc = base.clone();
    let mut bit = 1 << (64 - 1 - exponent.leading_zeros());
    debug_assert!((exponent & bit) != 0);
    while bit > 1 {
        bit >>= 1;
        acc = elem_squared(acc, m);
        if (exponent & bit) != 0 {
            acc = elem_mul_(&base, acc, m);
        }
    }
    acc
}

// `M` represents the prime modulus for which the exponent is in the interval
// [1, `m` - 1).
pub struct PrivateExponent<M> {
    limbs: BoxedLimbs<M>,
}

impl<M> PrivateExponent<M> {
    pub fn from_be_bytes_padded(
        input: untrusted::Input,
        p: &Modulus<M>,
    ) -> Result<Self, error::Unspecified> {
        let dP = BoxedLimbs::from_be_bytes_padded_less_than(input, p)?;

        // Proof that `dP < p - 1`:
        //
        // If `dP < p` then either `dP == p - 1` or `dP < p - 1`. Since `p` is
        // odd, `p - 1` is even. `d` is odd, and an odd number modulo an even
        // number is odd. Therefore `dP` must be odd. But then it cannot be
        // `p - 1` and so we know `dP < p - 1`.
        //
        // Further we know `dP != 0` because `dP` is not even.
        if limb::limbs_are_even_constant_time(&dP) != LimbMask::False {
            return Err(error::Unspecified);
        }

        Ok(Self { limbs: dP })
    }
}

impl<M: Prime> PrivateExponent<M> {
    // Returns `p - 2`.
    fn for_flt(p: &Modulus<M>) -> Self {
        let two = elem_add(p.one(), p.one(), p);
        let p_minus_2 = elem_sub(p.zero(), &two, p);
        Self {
            limbs: p_minus_2.limbs,
        }
    }
}

#[cfg(not(target_arch = "x86_64"))]
pub fn elem_exp_consttime<M>(
    base: Elem<M, R>,
    exponent: &PrivateExponent<M>,
    m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
    use crate::limb::Window;

    const WINDOW_BITS: usize = 5;
    const TABLE_ENTRIES: usize = 1 << WINDOW_BITS;

    let num_limbs = m.limbs.len();

    let mut table = vec![0; TABLE_ENTRIES * num_limbs];

    fn gather<M>(table: &[Limb], i: Window, r: &mut Elem<M, R>) {
        extern "C" {
            fn LIMBS_select_512_32(
                r: *mut Limb,
                table: *const Limb,
                num_limbs: c::size_t,
                i: Window,
            ) -> bssl::Result;
        }
        Result::from(unsafe {
            LIMBS_select_512_32(r.limbs.as_mut_ptr(), table.as_ptr(), r.limbs.len(), i)
        })
        .unwrap();
    }

    fn power<M>(
        table: &[Limb],
        i: Window,
        mut acc: Elem<M, R>,
        mut tmp: Elem<M, R>,
        m: &Modulus<M>,
    ) -> (Elem<M, R>, Elem<M, R>) {
        for _ in 0..WINDOW_BITS {
            acc = elem_squared(acc, &m.as_partial());
        }
        gather(table, i, &mut tmp);
        let acc = elem_mul(&tmp, acc, m);
        (acc, tmp)
    }

    let tmp = m.one();
    let tmp = elem_mul(m.oneRR().as_ref(), tmp, m);

    fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] {
        &table[(i * num_limbs)..][..num_limbs]
    }
    fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] {
        &mut table[(i * num_limbs)..][..num_limbs]
    }
    let num_limbs = m.limbs.len();
    entry_mut(&mut table, 0, num_limbs).copy_from_slice(&tmp.limbs);
    entry_mut(&mut table, 1, num_limbs).copy_from_slice(&base.limbs);
    for i in 2..TABLE_ENTRIES {
        let (src1, src2) = if i % 2 == 0 {
            (i / 2, i / 2)
        } else {
            (i - 1, 1)
        };
        let (previous, rest) = table.split_at_mut(num_limbs * i);
        let src1 = entry(previous, src1, num_limbs);
        let src2 = entry(previous, src2, num_limbs);
        let dst = entry_mut(rest, 0, num_limbs);
        limbs_mont_product(dst, src1, src2, &m.limbs, &m.n0);
    }

    let (r, _) = limb::fold_5_bit_windows(
        &exponent.limbs,
        |initial_window| {
            let mut r = Elem {
                limbs: base.limbs,
                encoding: PhantomData,
            };
            gather(&table, initial_window, &mut r);
            (r, tmp)
        },
        |(acc, tmp), window| power(&table, window, acc, tmp, m),
    );

    let r = r.into_unencoded(m);

    Ok(r)
}

/// Uses Fermat's Little Theorem to calculate modular inverse in constant time.
pub fn elem_inverse_consttime<M: Prime>(
    a: Elem<M, R>,
    m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
    elem_exp_consttime(a, &PrivateExponent::for_flt(&m), m)
}

#[cfg(target_arch = "x86_64")]
pub fn elem_exp_consttime<M>(
    base: Elem<M, R>,
    exponent: &PrivateExponent<M>,
    m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
    // The x86_64 assembly was written under the assumption that the input data
    // is aligned to `MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH` bytes, which was/is
    // 64 in OpenSSL. Similarly, OpenSSL uses the x86_64 assembly functions by
    // giving it only inputs `tmp`, `am`, and `np` that immediately follow the
    // table. The code seems to "work" even when the inputs aren't exactly
    // like that but the side channel defenses might not be as effective. All
    // the awkwardness here stems from trying to use the assembly code like
    // OpenSSL does.

    use crate::limb::Window;

    const WINDOW_BITS: usize = 5;
    const TABLE_ENTRIES: usize = 1 << WINDOW_BITS;

    let num_limbs = m.limbs.len();

    const ALIGNMENT: usize = 64;
    assert_eq!(ALIGNMENT % LIMB_BYTES, 0);
    let mut table = vec![0; ((TABLE_ENTRIES + 3) * num_limbs) + ALIGNMENT];
    let (table, state) = {
        let misalignment = (table.as_ptr() as usize) % ALIGNMENT;
        let table = &mut table[((ALIGNMENT - misalignment) / LIMB_BYTES)..];
        assert_eq!((table.as_ptr() as usize) % ALIGNMENT, 0);
        table.split_at_mut(TABLE_ENTRIES * num_limbs)
    };

    fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] {
        &table[(i * num_limbs)..][..num_limbs]
    }
    fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] {
        &mut table[(i * num_limbs)..][..num_limbs]
    }

    const ACC: usize = 0; // `tmp` in OpenSSL
    const BASE: usize = ACC + 1; // `am` in OpenSSL
    const M: usize = BASE + 1; // `np` in OpenSSL

    entry_mut(state, BASE, num_limbs).copy_from_slice(&base.limbs);
    entry_mut(state, M, num_limbs).copy_from_slice(&m.limbs);

    fn scatter(table: &mut [Limb], state: &[Limb], i: Window, num_limbs: usize) {
        extern "C" {
            fn GFp_bn_scatter5(a: *const Limb, a_len: c::size_t, table: *mut Limb, i: Window);
        }
        unsafe {
            GFp_bn_scatter5(
                entry(state, ACC, num_limbs).as_ptr(),
                num_limbs,
                table.as_mut_ptr(),
                i,
            )
        }
    }

    fn gather(table: &[Limb], state: &mut [Limb], i: Window, num_limbs: usize) {
        extern "C" {
            fn GFp_bn_gather5(r: *mut Limb, a_len: c::size_t, table: *const Limb, i: Window);
        }
        unsafe {
            GFp_bn_gather5(
                entry_mut(state, ACC, num_limbs).as_mut_ptr(),
                num_limbs,
                table.as_ptr(),
                i,
            )
        }
    }

    fn gather_square(table: &[Limb], state: &mut [Limb], n0: &N0, i: Window, num_limbs: usize) {
        gather(table, state, i, num_limbs);
        assert_eq!(ACC, 0);
        let (acc, rest) = state.split_at_mut(num_limbs);
        let m = entry(rest, M - 1, num_limbs);
        limbs_mont_square(acc, m, n0);
    }

    fn gather_mul_base(table: &[Limb], state: &mut [Limb], n0: &N0, i: Window, num_limbs: usize) {
        extern "C" {
            fn GFp_bn_mul_mont_gather5(
                rp: *mut Limb,
                ap: *const Limb,
                table: *const Limb,
                np: *const Limb,
                n0: &N0,
                num: c::size_t,
                power: Window,
            );
        }
        unsafe {
            GFp_bn_mul_mont_gather5(
                entry_mut(state, ACC, num_limbs).as_mut_ptr(),
                entry(state, BASE, num_limbs).as_ptr(),
                table.as_ptr(),
                entry(state, M, num_limbs).as_ptr(),
                n0,
                num_limbs,
                i,
            );
        }
    }

    fn power(table: &[Limb], state: &mut [Limb], n0: &N0, i: Window, num_limbs: usize) {
        extern "C" {
            fn GFp_bn_power5(
                r: *mut Limb,
                a: *const Limb,
                table: *const Limb,
                n: *const Limb,
                n0: &N0,
                num: c::size_t,
                i: Window,
            );
        }
        unsafe {
            GFp_bn_power5(
                entry_mut(state, ACC, num_limbs).as_mut_ptr(),
                entry_mut(state, ACC, num_limbs).as_mut_ptr(),
                table.as_ptr(),
                entry(state, M, num_limbs).as_ptr(),
                n0,
                num_limbs,
                i,
            );
        }
    }

    // table[0] = base**0.
    {
        let acc = entry_mut(state, ACC, num_limbs);
        acc[0] = 1;
        limbs_mont_mul(acc, &m.oneRR.0.limbs, &m.limbs, &m.n0);
    }
    scatter(table, state, 0, num_limbs);

    // table[1] = base**1.
    entry_mut(state, ACC, num_limbs).copy_from_slice(&base.limbs);
    scatter(table, state, 1, num_limbs);

    for i in 2..(TABLE_ENTRIES as Window) {
        if i % 2 == 0 {
            // TODO: Optimize this to avoid gathering
            gather_square(table, state, &m.n0, i / 2, num_limbs);
        } else {
            gather_mul_base(table, state, &m.n0, i - 1, num_limbs)
        };
        scatter(table, state, i, num_limbs);
    }

    let state = limb::fold_5_bit_windows(
        &exponent.limbs,
        |initial_window| {
            gather(table, state, initial_window, num_limbs);
            state
        },
        |state, window| {
            power(table, state, &m.n0, window, num_limbs);
            state
        },
    );

    extern "C" {
        fn GFp_bn_from_montgomery(
            r: *mut Limb,
            a: *const Limb,
            not_used: *const Limb,
            n: *const Limb,
            n0: &N0,
            num: c::size_t,
        ) -> bssl::Result;
    }
    Result::from(unsafe {
        GFp_bn_from_montgomery(
            entry_mut(state, ACC, num_limbs).as_mut_ptr(),
            entry(state, ACC, num_limbs).as_ptr(),
            core::ptr::null(),
            entry(state, M, num_limbs).as_ptr(),
            &m.n0,
            num_limbs,
        )
    })?;
    let mut r = Elem {
        limbs: base.limbs,
        encoding: PhantomData,
    };
    r.limbs.copy_from_slice(entry(state, ACC, num_limbs));
    Ok(r)
}

/// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m).
pub fn verify_inverses_consttime<M>(
    a: &Elem<M, R>,
    b: Elem<M, Unencoded>,
    m: &Modulus<M>,
) -> Result<(), error::Unspecified> {
    if elem_mul(a, b, m).is_one() {
        Ok(())
    } else {
        Err(error::Unspecified)
    }
}

#[inline]
pub fn elem_verify_equal_consttime<M, E>(
    a: &Elem<M, E>,
    b: &Elem<M, E>,
) -> Result<(), error::Unspecified> {
    if limb::limbs_equal_limbs_consttime(&a.limbs, &b.limbs) == LimbMask::True {
        Ok(())
    } else {
        Err(error::Unspecified)
    }
}

/// Nonnegative integers.
pub struct Nonnegative {
    limbs: Vec<Limb>,
}

impl Nonnegative {
    pub fn from_be_bytes_with_bit_length(
        input: untrusted::Input,
    ) -> Result<(Self, bits::BitLength), error::Unspecified> {
        let mut limbs = vec![0; (input.len() + LIMB_BYTES - 1) / LIMB_BYTES];
        // Rejects empty inputs.
        limb::parse_big_endian_and_pad_consttime(input, &mut limbs)?;
        while limbs.last() == Some(&0) {
            let _ = limbs.pop();
        }
        let r_bits = limb::limbs_minimal_bits(&limbs);
        Ok((Self { limbs }, r_bits))
    }

    #[inline]
    pub fn is_odd(&self) -> bool {
        limb::limbs_are_even_constant_time(&self.limbs) != LimbMask::True
    }

    pub fn verify_less_than(&self, other: &Self) -> Result<(), error::Unspecified> {
        if !greater_than(other, self) {
            return Err(error::Unspecified);
        }
        Ok(())
    }

    pub fn to_elem<M>(&self, m: &Modulus<M>) -> Result<Elem<M, Unencoded>, error::Unspecified> {
        self.verify_less_than_modulus(&m)?;
        let mut r = m.zero();
        r.limbs[0..self.limbs.len()].copy_from_slice(&self.limbs);
        Ok(r)
    }

    pub fn verify_less_than_modulus<M>(&self, m: &Modulus<M>) -> Result<(), error::Unspecified> {
        if self.limbs.len() > m.limbs.len() {
            return Err(error::Unspecified);
        }
        if self.limbs.len() == m.limbs.len() {
            if limb::limbs_less_than_limbs_consttime(&self.limbs, &m.limbs) != LimbMask::True {
                return Err(error::Unspecified);
            }
        }
        return Ok(());
    }
}

// Returns a > b.
fn greater_than(a: &Nonnegative, b: &Nonnegative) -> bool {
    if a.limbs.len() == b.limbs.len() {
        limb::limbs_less_than_limbs_vartime(&b.limbs, &a.limbs)
    } else {
        a.limbs.len() > b.limbs.len()
    }
}

#[derive(Clone)]
#[repr(transparent)]
struct N0([Limb; 2]);

const N0_LIMBS_USED: usize = 64 / LIMB_BITS;

impl From<u64> for N0 {
    #[inline]
    fn from(n0: u64) -> Self {
        #[cfg(target_pointer_width = "64")]
        {
            Self([n0, 0])
        }

        #[cfg(target_pointer_width = "32")]
        {
            Self([n0 as Limb, (n0 >> LIMB_BITS) as Limb])
        }
    }
}

/// r *= a
fn limbs_mont_mul(r: &mut [Limb], a: &[Limb], m: &[Limb], n0: &N0) {
    debug_assert_eq!(r.len(), m.len());
    debug_assert_eq!(a.len(), m.len());
    unsafe {
        GFp_bn_mul_mont(
            r.as_mut_ptr(),
            r.as_ptr(),
            a.as_ptr(),
            m.as_ptr(),
            n0,
            r.len(),
        )
    }
}

/// r = a * b
#[cfg(not(target_arch = "x86_64"))]
fn limbs_mont_product(r: &mut [Limb], a: &[Limb], b: &[Limb], m: &[Limb], n0: &N0) {
    debug_assert_eq!(r.len(), m.len());
    debug_assert_eq!(a.len(), m.len());
    debug_assert_eq!(b.len(), m.len());
    unsafe {
        GFp_bn_mul_mont(
            r.as_mut_ptr(),
            a.as_ptr(),
            b.as_ptr(),
            m.as_ptr(),
            n0,
            r.len(),
        )
    }
}

/// r = r**2
fn limbs_mont_square(r: &mut [Limb], m: &[Limb], n0: &N0) {
    debug_assert_eq!(r.len(), m.len());
    unsafe {
        GFp_bn_mul_mont(
            r.as_mut_ptr(),
            r.as_ptr(),
            r.as_ptr(),
            m.as_ptr(),
            n0,
            r.len(),
        )
    }
}

extern "C" {
    // `r` and/or 'a' and/or 'b' may alias.
    fn GFp_bn_mul_mont(
        r: *mut Limb,
        a: *const Limb,
        b: *const Limb,
        n: *const Limb,
        n0: &N0,
        num_limbs: c::size_t,
    );
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test;
    use alloc::format;
    use untrusted;

    // Type-level representation of an arbitrary modulus.
    struct M {}

    unsafe impl PublicModulus for M {}

    #[test]
    fn test_elem_exp_consttime() {
        test::run(
            test_file!("bigint_elem_exp_consttime_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                let m = consume_modulus::<M>(test_case, "M");
                let expected_result = consume_elem(test_case, "ModExp", &m);
                let base = consume_elem(test_case, "A", &m);
                let e = {
                    let bytes = test_case.consume_bytes("E");
                    PrivateExponent::from_be_bytes_padded(untrusted::Input::from(&bytes), &m)
                        .expect("valid exponent")
                };
                let base = into_encoded(base, &m);
                let actual_result = elem_exp_consttime(base, &e, &m).unwrap();
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    #[test]
    // TODO: fn test_elem_exp_vartime() using
    // "src/rsa/bigint_elem_exp_vartime_tests.txt". See that file for details.
    // In the meantime, the function is tested indirectly via the RSA
    // verification and signing tests.
    #[test]
    fn test_elem_mul() {
        test::run(
            test_file!("bigint_elem_mul_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                let m = consume_modulus::<M>(test_case, "M");
                let expected_result = consume_elem(test_case, "ModMul", &m);
                let a = consume_elem(test_case, "A", &m);
                let b = consume_elem(test_case, "B", &m);

                let b = into_encoded(b, &m);
                let a = into_encoded(a, &m);
                let actual_result = elem_mul(&a, b, &m);
                let actual_result = actual_result.into_unencoded(&m);
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    #[test]
    fn test_elem_squared() {
        test::run(
            test_file!("bigint_elem_squared_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                let m = consume_modulus::<M>(test_case, "M");
                let expected_result = consume_elem(test_case, "ModSquare", &m);
                let a = consume_elem(test_case, "A", &m);

                let a = into_encoded(a, &m);
                let actual_result = elem_squared(a, &m.as_partial());
                let actual_result = actual_result.into_unencoded(&m);
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    #[test]
    fn test_elem_reduced() {
        test::run(
            test_file!("bigint_elem_reduced_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                struct MM {}
                unsafe impl SmallerModulus<MM> for M {}
                unsafe impl NotMuchSmallerModulus<MM> for M {}

                let m = consume_modulus::<M>(test_case, "M");
                let expected_result = consume_elem(test_case, "R", &m);
                let a =
                    consume_elem_unchecked::<MM>(test_case, "A", expected_result.limbs.len() * 2);

                let actual_result = elem_reduced(&a, &m).unwrap();
                let oneRR = m.oneRR();
                let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m);
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    #[test]
    fn test_elem_reduced_once() {
        test::run(
            test_file!("bigint_elem_reduced_once_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                struct N {}
                struct QQ {}
                unsafe impl SmallerModulus<N> for QQ {}
                unsafe impl SlightlySmallerModulus<N> for QQ {}

                let qq = consume_modulus::<QQ>(test_case, "QQ");
                let expected_result = consume_elem::<QQ>(test_case, "R", &qq);
                let n = consume_modulus::<N>(test_case, "N");
                let a = consume_elem::<N>(test_case, "A", &n);

                let actual_result = elem_reduced_once(&a, &qq);
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    #[test]
    fn test_modulus_debug() {
        let (modulus, _) = Modulus::<M>::from_be_bytes_with_bit_length(untrusted::Input::from(
            &vec![0xff; LIMB_BYTES * MODULUS_MIN_LIMBS],
        ))
        .unwrap();
        assert_eq!("Modulus", format!("{:?}", modulus));
    }

    #[test]
    fn test_public_exponent_debug() {
        let exponent =
            PublicExponent::from_be_bytes(untrusted::Input::from(&[0x1, 0x00, 0x01]), 65537)
                .unwrap();
        assert_eq!("PublicExponent(65537)", format!("{:?}", exponent));
    }

    fn consume_elem<M>(
        test_case: &mut test::TestCase,
        name: &str,
        m: &Modulus<M>,
    ) -> Elem<M, Unencoded> {
        let value = test_case.consume_bytes(name);
        Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap()
    }

    fn consume_elem_unchecked<M>(
        test_case: &mut test::TestCase,
        name: &str,
        num_limbs: usize,
    ) -> Elem<M, Unencoded> {
        let value = consume_nonnegative(test_case, name);
        let mut limbs = BoxedLimbs::zero(Width {
            num_limbs,
            m: PhantomData,
        });
        limbs[0..value.limbs.len()].copy_from_slice(&value.limbs);
        Elem {
            limbs,
            encoding: PhantomData,
        }
    }

    fn consume_modulus<M>(test_case: &mut test::TestCase, name: &str) -> Modulus<M> {
        let value = test_case.consume_bytes(name);
        let (value, _) =
            Modulus::from_be_bytes_with_bit_length(untrusted::Input::from(&value)).unwrap();
        value
    }

    fn consume_nonnegative(test_case: &mut test::TestCase, name: &str) -> Nonnegative {
        let bytes = test_case.consume_bytes(name);
        let (r, _r_bits) =
            Nonnegative::from_be_bytes_with_bit_length(untrusted::Input::from(&bytes)).unwrap();
        r
    }

    fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) {
        elem_verify_equal_consttime(&a, b).unwrap()
    }

    fn into_encoded<M>(a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> {
        elem_mul(m.oneRR().as_ref(), a, m)
    }
}