1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
// Copyright 2016 6WIND S.A. <[email protected]> // // Licensed under the Apache License, Version 2.0 <http://www.apache.org/licenses/LICENSE-2.0> or // the MIT license <http://opensource.org/licenses/MIT>, at your option. This file may not be // copied, modified, or distributed except according to those terms. //! This module contains all the definitions related to eBPF, and some functions permitting to //! manipulate eBPF instructions. //! //! The number of bytes in an instruction, the maximum number of instructions in a program, and //! also all operation codes are defined here as constants. //! //! The structure for an instruction used by this crate, as well as the function to extract it from //! a program, is also defined in the module. //! //! To learn more about these instructions, see the Linux kernel documentation: //! <https://www.kernel.org/doc/Documentation/networking/filter.txt>, or for a shorter version of //! the list of the operation codes: <https://github.com/iovisor/bpf-docs/blob/master/eBPF.md> use byteorder::{ByteOrder, LittleEndian}; use hash32::{Hash, Hasher, Murmur3Hasher}; use std::fmt; /// Maximum number of instructions in an eBPF program. pub const PROG_MAX_INSNS: usize = 65_536; /// Size of an eBPF instructions, in bytes. pub const INSN_SIZE: usize = 8; /// Maximum size of an eBPF program, in bytes. pub const PROG_MAX_SIZE: usize = PROG_MAX_INSNS * INSN_SIZE; /// Stack register pub const STACK_REG: usize = 10; /// First scratch register pub const FIRST_SCRATCH_REG: usize = 6; /// Number of scratch registers pub const SCRATCH_REGS: usize = 4; /// ELF dump instruction offset /// Instruction numbers typically start at 29 in the ELF dump, use this offset /// when reporting so that trace aligns with the dump. pub const ELF_INSN_DUMP_OFFSET: usize = 29; // Memory map // +-----------------+ // | Program | // +-----------------+ // | Stack | // +-----------------+ // | Heap | // +-----------------+ // | Input | // +-----------------+ // The values below providesufficient separations between the map areas. Avoid using // 0x0 to distinguish virtual addresses from null pointers. // Note: Compiled programs themselves have no direct dependency on these values so // they may be modified based on new requirements. /// Start of the program bits (text and ro segments) in the memory map pub const MM_PROGRAM_START: u64 = 0x100000000; /// Start of the stack in the memory map pub const MM_STACK_START: u64 = 0x200000000; /// Start of the heap in the memory map pub const MM_HEAP_START: u64 = 0x300000000; /// Start of the input buffers in the memory map pub const MM_INPUT_START: u64 = 0x400000000; // eBPF op codes. // See also https://www.kernel.org/doc/Documentation/networking/filter.txt // Three least significant bits are operation class: /// BPF operation class: load from immediate. pub const BPF_LD: u8 = 0x00; /// BPF operation class: load from register. pub const BPF_LDX: u8 = 0x01; /// BPF operation class: store immediate. pub const BPF_ST: u8 = 0x02; /// BPF operation class: store value from register. pub const BPF_STX: u8 = 0x03; /// BPF operation class: 32 bits arithmetic operation. pub const BPF_ALU: u8 = 0x04; /// BPF operation class: jump. pub const BPF_JMP: u8 = 0x05; // [ class 6 unused, reserved for future use ] /// BPF operation class: 64 bits arithmetic operation. pub const BPF_ALU64: u8 = 0x07; // For load and store instructions: // +------------+--------+------------+ // | 3 bits | 2 bits | 3 bits | // | mode | size | insn class | // +------------+--------+------------+ // (MSB) (LSB) // Size modifiers: /// BPF size modifier: word (4 bytes). pub const BPF_W: u8 = 0x00; /// BPF size modifier: half-word (2 bytes). pub const BPF_H: u8 = 0x08; /// BPF size modifier: byte (1 byte). pub const BPF_B: u8 = 0x10; /// BPF size modifier: double word (8 bytes). pub const BPF_DW: u8 = 0x18; // Mode modifiers: /// BPF mode modifier: immediate value. pub const BPF_IMM: u8 = 0x00; /// BPF mode modifier: absolute load. pub const BPF_ABS: u8 = 0x20; /// BPF mode modifier: indirect load. pub const BPF_IND: u8 = 0x40; /// BPF mode modifier: load from / store to memory. pub const BPF_MEM: u8 = 0x60; // [ 0x80 reserved ] // [ 0xa0 reserved ] /// BPF mode modifier: exclusive add. pub const BPF_XADD: u8 = 0xc0; // For arithmetic (BPF_ALU/BPF_ALU64) and jump (BPF_JMP) instructions: // +----------------+--------+--------+ // | 4 bits |1 b.| 3 bits | // | operation code | src| insn class | // +----------------+----+------------+ // (MSB) (LSB) // Source modifiers: /// BPF source operand modifier: 32-bit immediate value. pub const BPF_K: u8 = 0x00; /// BPF source operand modifier: `src` register. pub const BPF_X: u8 = 0x08; // Operation codes -- BPF_ALU or BPF_ALU64 classes: /// BPF ALU/ALU64 operation code: addition. pub const BPF_ADD: u8 = 0x00; /// BPF ALU/ALU64 operation code: subtraction. pub const BPF_SUB: u8 = 0x10; /// BPF ALU/ALU64 operation code: multiplication. pub const BPF_MUL: u8 = 0x20; /// BPF ALU/ALU64 operation code: division. pub const BPF_DIV: u8 = 0x30; /// BPF ALU/ALU64 operation code: or. pub const BPF_OR: u8 = 0x40; /// BPF ALU/ALU64 operation code: and. pub const BPF_AND: u8 = 0x50; /// BPF ALU/ALU64 operation code: left shift. pub const BPF_LSH: u8 = 0x60; /// BPF ALU/ALU64 operation code: right shift. pub const BPF_RSH: u8 = 0x70; /// BPF ALU/ALU64 operation code: negation. pub const BPF_NEG: u8 = 0x80; /// BPF ALU/ALU64 operation code: modulus. pub const BPF_MOD: u8 = 0x90; /// BPF ALU/ALU64 operation code: exclusive or. pub const BPF_XOR: u8 = 0xa0; /// BPF ALU/ALU64 operation code: move. pub const BPF_MOV: u8 = 0xb0; /// BPF ALU/ALU64 operation code: sign extending right shift. pub const BPF_ARSH: u8 = 0xc0; /// BPF ALU/ALU64 operation code: endianness conversion. pub const BPF_END: u8 = 0xd0; // Operation codes -- BPF_JMP class: /// BPF JMP operation code: jump. pub const BPF_JA: u8 = 0x00; /// BPF JMP operation code: jump if equal. pub const BPF_JEQ: u8 = 0x10; /// BPF JMP operation code: jump if greater than. pub const BPF_JGT: u8 = 0x20; /// BPF JMP operation code: jump if greater or equal. pub const BPF_JGE: u8 = 0x30; /// BPF JMP operation code: jump if `src` & `reg`. pub const BPF_JSET: u8 = 0x40; /// BPF JMP operation code: jump if not equal. pub const BPF_JNE: u8 = 0x50; /// BPF JMP operation code: jump if greater than (signed). pub const BPF_JSGT: u8 = 0x60; /// BPF JMP operation code: jump if greater or equal (signed). pub const BPF_JSGE: u8 = 0x70; /// BPF JMP operation code: syscall function call. pub const BPF_CALL: u8 = 0x80; /// BPF JMP operation code: return from program. pub const BPF_EXIT: u8 = 0x90; /// BPF JMP operation code: jump if lower than. pub const BPF_JLT: u8 = 0xa0; /// BPF JMP operation code: jump if lower or equal. pub const BPF_JLE: u8 = 0xb0; /// BPF JMP operation code: jump if lower than (signed). pub const BPF_JSLT: u8 = 0xc0; /// BPF JMP operation code: jump if lower or equal (signed). pub const BPF_JSLE: u8 = 0xd0; // Op codes // (Following operation names are not “official”, but may be proper to rbpf; Linux kernel only // combines above flags and does not attribute a name per operation.) /// BPF opcode: `ldabsb src, dst, imm`. pub const LD_ABS_B: u8 = BPF_LD | BPF_ABS | BPF_B; /// BPF opcode: `ldabsh src, dst, imm`. pub const LD_ABS_H: u8 = BPF_LD | BPF_ABS | BPF_H; /// BPF opcode: `ldabsw src, dst, imm`. pub const LD_ABS_W: u8 = BPF_LD | BPF_ABS | BPF_W; /// BPF opcode: `ldabsdw src, dst, imm`. pub const LD_ABS_DW: u8 = BPF_LD | BPF_ABS | BPF_DW; /// BPF opcode: `ldindb src, dst, imm`. pub const LD_IND_B: u8 = BPF_LD | BPF_IND | BPF_B; /// BPF opcode: `ldindh src, dst, imm`. pub const LD_IND_H: u8 = BPF_LD | BPF_IND | BPF_H; /// BPF opcode: `ldindw src, dst, imm`. pub const LD_IND_W: u8 = BPF_LD | BPF_IND | BPF_W; /// BPF opcode: `ldinddw src, dst, imm`. pub const LD_IND_DW: u8 = BPF_LD | BPF_IND | BPF_DW; /// BPF opcode: `lddw dst, imm` /// `dst = imm`. pub const LD_DW_IMM: u8 = BPF_LD | BPF_IMM | BPF_DW; /// BPF opcode: `ldxb dst, [src + off]` /// `dst = (src + off) as u8`. pub const LD_B_REG: u8 = BPF_LDX | BPF_MEM | BPF_B; /// BPF opcode: `ldxh dst, [src + off]` /// `dst = (src + off) as u16`. pub const LD_H_REG: u8 = BPF_LDX | BPF_MEM | BPF_H; /// BPF opcode: `ldxw dst, [src + off]` /// `dst = (src + off) as u32`. pub const LD_W_REG: u8 = BPF_LDX | BPF_MEM | BPF_W; /// BPF opcode: `ldxdw dst, [src + off]` /// `dst = (src + off) as u64`. pub const LD_DW_REG: u8 = BPF_LDX | BPF_MEM | BPF_DW; /// BPF opcode: `stb [dst + off], imm` /// `(dst + offset) as u8 = imm`. pub const ST_B_IMM: u8 = BPF_ST | BPF_MEM | BPF_B; /// BPF opcode: `sth [dst + off], imm` /// `(dst + offset) as u16 = imm`. pub const ST_H_IMM: u8 = BPF_ST | BPF_MEM | BPF_H; /// BPF opcode: `stw [dst + off], imm` /// `(dst + offset) as u32 = imm`. pub const ST_W_IMM: u8 = BPF_ST | BPF_MEM | BPF_W; /// BPF opcode: `stdw [dst + off], imm` /// `(dst + offset) as u64 = imm`. pub const ST_DW_IMM: u8 = BPF_ST | BPF_MEM | BPF_DW; /// BPF opcode: `stxb [dst + off], src` /// `(dst + offset) as u8 = src`. pub const ST_B_REG: u8 = BPF_STX | BPF_MEM | BPF_B; /// BPF opcode: `stxh [dst + off], src` /// `(dst + offset) as u16 = src`. pub const ST_H_REG: u8 = BPF_STX | BPF_MEM | BPF_H; /// BPF opcode: `stxw [dst + off], src` /// `(dst + offset) as u32 = src`. pub const ST_W_REG: u8 = BPF_STX | BPF_MEM | BPF_W; /// BPF opcode: `stxdw [dst + off], src` /// `(dst + offset) as u64 = src`. pub const ST_DW_REG: u8 = BPF_STX | BPF_MEM | BPF_DW; /// BPF opcode: `stxxaddw [dst + off], src`. pub const ST_W_XADD: u8 = BPF_STX | BPF_XADD | BPF_W; /// BPF opcode: `stxxadddw [dst + off], src`. pub const ST_DW_XADD: u8 = BPF_STX | BPF_XADD | BPF_DW; /// BPF opcode: `add32 dst, imm` /// `dst += imm`. pub const ADD32_IMM: u8 = BPF_ALU | BPF_K | BPF_ADD; /// BPF opcode: `add32 dst, src` /// `dst += src`. pub const ADD32_REG: u8 = BPF_ALU | BPF_X | BPF_ADD; /// BPF opcode: `sub32 dst, imm` /// `dst -= imm`. pub const SUB32_IMM: u8 = BPF_ALU | BPF_K | BPF_SUB; /// BPF opcode: `sub32 dst, src` /// `dst -= src`. pub const SUB32_REG: u8 = BPF_ALU | BPF_X | BPF_SUB; /// BPF opcode: `mul32 dst, imm` /// `dst *= imm`. pub const MUL32_IMM: u8 = BPF_ALU | BPF_K | BPF_MUL; /// BPF opcode: `mul32 dst, src` /// `dst *= src`. pub const MUL32_REG: u8 = BPF_ALU | BPF_X | BPF_MUL; /// BPF opcode: `div32 dst, imm` /// `dst /= imm`. pub const DIV32_IMM: u8 = BPF_ALU | BPF_K | BPF_DIV; /// BPF opcode: `div32 dst, src` /// `dst /= src`. pub const DIV32_REG: u8 = BPF_ALU | BPF_X | BPF_DIV; /// BPF opcode: `or32 dst, imm` /// `dst |= imm`. pub const OR32_IMM: u8 = BPF_ALU | BPF_K | BPF_OR; /// BPF opcode: `or32 dst, src` /// `dst |= src`. pub const OR32_REG: u8 = BPF_ALU | BPF_X | BPF_OR; /// BPF opcode: `and32 dst, imm` /// `dst &= imm`. pub const AND32_IMM: u8 = BPF_ALU | BPF_K | BPF_AND; /// BPF opcode: `and32 dst, src` /// `dst &= src`. pub const AND32_REG: u8 = BPF_ALU | BPF_X | BPF_AND; /// BPF opcode: `lsh32 dst, imm` /// `dst <<= imm`. pub const LSH32_IMM: u8 = BPF_ALU | BPF_K | BPF_LSH; /// BPF opcode: `lsh32 dst, src` /// `dst <<= src`. pub const LSH32_REG: u8 = BPF_ALU | BPF_X | BPF_LSH; /// BPF opcode: `rsh32 dst, imm` /// `dst >>= imm`. pub const RSH32_IMM: u8 = BPF_ALU | BPF_K | BPF_RSH; /// BPF opcode: `rsh32 dst, src` /// `dst >>= src`. pub const RSH32_REG: u8 = BPF_ALU | BPF_X | BPF_RSH; /// BPF opcode: `neg32 dst` /// `dst = -dst`. pub const NEG32: u8 = BPF_ALU | BPF_NEG; /// BPF opcode: `mod32 dst, imm` /// `dst %= imm`. pub const MOD32_IMM: u8 = BPF_ALU | BPF_K | BPF_MOD; /// BPF opcode: `mod32 dst, src` /// `dst %= src`. pub const MOD32_REG: u8 = BPF_ALU | BPF_X | BPF_MOD; /// BPF opcode: `xor32 dst, imm` /// `dst ^= imm`. pub const XOR32_IMM: u8 = BPF_ALU | BPF_K | BPF_XOR; /// BPF opcode: `xor32 dst, src` /// `dst ^= src`. pub const XOR32_REG: u8 = BPF_ALU | BPF_X | BPF_XOR; /// BPF opcode: `mov32 dst, imm` /// `dst = imm`. pub const MOV32_IMM: u8 = BPF_ALU | BPF_K | BPF_MOV; /// BPF opcode: `mov32 dst, src` /// `dst = src`. pub const MOV32_REG: u8 = BPF_ALU | BPF_X | BPF_MOV; /// BPF opcode: `arsh32 dst, imm` /// `dst >>= imm (arithmetic)`. /// /// <https://en.wikipedia.org/wiki/Arithmetic_shift> pub const ARSH32_IMM: u8 = BPF_ALU | BPF_K | BPF_ARSH; /// BPF opcode: `arsh32 dst, src` /// `dst >>= src (arithmetic)`. /// /// <https://en.wikipedia.org/wiki/Arithmetic_shift> pub const ARSH32_REG: u8 = BPF_ALU | BPF_X | BPF_ARSH; /// BPF opcode: `le dst` /// `dst = htole<imm>(dst), with imm in {16, 32, 64}`. pub const LE: u8 = BPF_ALU | BPF_K | BPF_END; /// BPF opcode: `be dst` /// `dst = htobe<imm>(dst), with imm in {16, 32, 64}`. pub const BE: u8 = BPF_ALU | BPF_X | BPF_END; /// BPF opcode: `add64 dst, imm` /// `dst += imm`. pub const ADD64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_ADD; /// BPF opcode: `add64 dst, src` /// `dst += src`. pub const ADD64_REG: u8 = BPF_ALU64 | BPF_X | BPF_ADD; /// BPF opcode: `sub64 dst, imm` /// `dst -= imm`. pub const SUB64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_SUB; /// BPF opcode: `sub64 dst, src` /// `dst -= src`. pub const SUB64_REG: u8 = BPF_ALU64 | BPF_X | BPF_SUB; /// BPF opcode: `div64 dst, imm` /// `dst /= imm`. pub const MUL64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_MUL; /// BPF opcode: `div64 dst, src` /// `dst /= src`. pub const MUL64_REG: u8 = BPF_ALU64 | BPF_X | BPF_MUL; /// BPF opcode: `div64 dst, imm` /// `dst /= imm`. pub const DIV64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_DIV; /// BPF opcode: `div64 dst, src` /// `dst /= src`. pub const DIV64_REG: u8 = BPF_ALU64 | BPF_X | BPF_DIV; /// BPF opcode: `or64 dst, imm` /// `dst |= imm`. pub const OR64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_OR; /// BPF opcode: `or64 dst, src` /// `dst |= src`. pub const OR64_REG: u8 = BPF_ALU64 | BPF_X | BPF_OR; /// BPF opcode: `and64 dst, imm` /// `dst &= imm`. pub const AND64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_AND; /// BPF opcode: `and64 dst, src` /// `dst &= src`. pub const AND64_REG: u8 = BPF_ALU64 | BPF_X | BPF_AND; /// BPF opcode: `lsh64 dst, imm` /// `dst <<= imm`. pub const LSH64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_LSH; /// BPF opcode: `lsh64 dst, src` /// `dst <<= src`. pub const LSH64_REG: u8 = BPF_ALU64 | BPF_X | BPF_LSH; /// BPF opcode: `rsh64 dst, imm` /// `dst >>= imm`. pub const RSH64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_RSH; /// BPF opcode: `rsh64 dst, src` /// `dst >>= src`. pub const RSH64_REG: u8 = BPF_ALU64 | BPF_X | BPF_RSH; /// BPF opcode: `neg64 dst, imm` /// `dst = -dst`. pub const NEG64: u8 = BPF_ALU64 | BPF_NEG; /// BPF opcode: `mod64 dst, imm` /// `dst %= imm`. pub const MOD64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_MOD; /// BPF opcode: `mod64 dst, src` /// `dst %= src`. pub const MOD64_REG: u8 = BPF_ALU64 | BPF_X | BPF_MOD; /// BPF opcode: `xor64 dst, imm` /// `dst ^= imm`. pub const XOR64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_XOR; /// BPF opcode: `xor64 dst, src` /// `dst ^= src`. pub const XOR64_REG: u8 = BPF_ALU64 | BPF_X | BPF_XOR; /// BPF opcode: `mov64 dst, imm` /// `dst = imm`. pub const MOV64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_MOV; /// BPF opcode: `mov64 dst, src` /// `dst = src`. pub const MOV64_REG: u8 = BPF_ALU64 | BPF_X | BPF_MOV; /// BPF opcode: `arsh64 dst, imm` /// `dst >>= imm (arithmetic)`. /// /// <https://en.wikipedia.org/wiki/Arithmetic_shift> pub const ARSH64_IMM: u8 = BPF_ALU64 | BPF_K | BPF_ARSH; /// BPF opcode: `arsh64 dst, src` /// `dst >>= src (arithmetic)`. /// /// <https://en.wikipedia.org/wiki/Arithmetic_shift> pub const ARSH64_REG: u8 = BPF_ALU64 | BPF_X | BPF_ARSH; /// BPF opcode: `ja +off` /// `PC += off`. pub const JA: u8 = BPF_JMP | BPF_JA; /// BPF opcode: `jeq dst, imm, +off` /// `PC += off if dst == imm`. pub const JEQ_IMM: u8 = BPF_JMP | BPF_K | BPF_JEQ; /// BPF opcode: `jeq dst, src, +off` /// `PC += off if dst == src`. pub const JEQ_REG: u8 = BPF_JMP | BPF_X | BPF_JEQ; /// BPF opcode: `jgt dst, imm, +off` /// `PC += off if dst > imm`. pub const JGT_IMM: u8 = BPF_JMP | BPF_K | BPF_JGT; /// BPF opcode: `jgt dst, src, +off` /// `PC += off if dst > src`. pub const JGT_REG: u8 = BPF_JMP | BPF_X | BPF_JGT; /// BPF opcode: `jge dst, imm, +off` /// `PC += off if dst >= imm`. pub const JGE_IMM: u8 = BPF_JMP | BPF_K | BPF_JGE; /// BPF opcode: `jge dst, src, +off` /// `PC += off if dst >= src`. pub const JGE_REG: u8 = BPF_JMP | BPF_X | BPF_JGE; /// BPF opcode: `jlt dst, imm, +off` /// `PC += off if dst < imm`. pub const JLT_IMM: u8 = BPF_JMP | BPF_K | BPF_JLT; /// BPF opcode: `jlt dst, src, +off` /// `PC += off if dst < src`. pub const JLT_REG: u8 = BPF_JMP | BPF_X | BPF_JLT; /// BPF opcode: `jle dst, imm, +off` /// `PC += off if dst <= imm`. pub const JLE_IMM: u8 = BPF_JMP | BPF_K | BPF_JLE; /// BPF opcode: `jle dst, src, +off` /// `PC += off if dst <= src`. pub const JLE_REG: u8 = BPF_JMP | BPF_X | BPF_JLE; /// BPF opcode: `jset dst, imm, +off` /// `PC += off if dst & imm`. pub const JSET_IMM: u8 = BPF_JMP | BPF_K | BPF_JSET; /// BPF opcode: `jset dst, src, +off` /// `PC += off if dst & src`. pub const JSET_REG: u8 = BPF_JMP | BPF_X | BPF_JSET; /// BPF opcode: `jne dst, imm, +off` /// `PC += off if dst != imm`. pub const JNE_IMM: u8 = BPF_JMP | BPF_K | BPF_JNE; /// BPF opcode: `jne dst, src, +off` /// `PC += off if dst != src`. pub const JNE_REG: u8 = BPF_JMP | BPF_X | BPF_JNE; /// BPF opcode: `jsgt dst, imm, +off` /// `PC += off if dst > imm (signed)`. pub const JSGT_IMM: u8 = BPF_JMP | BPF_K | BPF_JSGT; /// BPF opcode: `jsgt dst, src, +off` /// `PC += off if dst > src (signed)`. pub const JSGT_REG: u8 = BPF_JMP | BPF_X | BPF_JSGT; /// BPF opcode: `jsge dst, imm, +off` /// `PC += off if dst >= imm (signed)`. pub const JSGE_IMM: u8 = BPF_JMP | BPF_K | BPF_JSGE; /// BPF opcode: `jsge dst, src, +off` /// `PC += off if dst >= src (signed)`. pub const JSGE_REG: u8 = BPF_JMP | BPF_X | BPF_JSGE; /// BPF opcode: `jslt dst, imm, +off` /// `PC += off if dst < imm (signed)`. pub const JSLT_IMM: u8 = BPF_JMP | BPF_K | BPF_JSLT; /// BPF opcode: `jslt dst, src, +off` /// `PC += off if dst < src (signed)`. pub const JSLT_REG: u8 = BPF_JMP | BPF_X | BPF_JSLT; /// BPF opcode: `jsle dst, imm, +off` /// `PC += off if dst <= imm (signed)`. pub const JSLE_IMM: u8 = BPF_JMP | BPF_K | BPF_JSLE; /// BPF opcode: `jsle dst, src, +off` /// `PC += off if dst <= src (signed)`. pub const JSLE_REG: u8 = BPF_JMP | BPF_X | BPF_JSLE; /// BPF opcode: `call imm` /// syscall function call to syscall with key `imm`. pub const CALL_IMM: u8 = BPF_JMP | BPF_CALL; /// BPF opcode: tail call. pub const CALL_REG: u8 = BPF_JMP | BPF_X | BPF_CALL; /// BPF opcode: `exit` /// `return r0`. pub const EXIT: u8 = BPF_JMP | BPF_EXIT; // Used in JIT /// Mask to extract the operation class from an operation code. pub const BPF_CLS_MASK: u8 = 0x07; /// Mask to extract the arithmetic operation code from an instruction operation code. pub const BPF_ALU_OP_MASK: u8 = 0xf0; /// An eBPF instruction. /// /// See <https://www.kernel.org/doc/Documentation/networking/filter.txt> for the Linux kernel /// documentation about eBPF, or <https://github.com/iovisor/bpf-docs/blob/master/eBPF.md> for a /// more concise version. #[derive(PartialEq, Clone)] pub struct Insn { /// Operation code. pub opc: u8, /// Destination register operand. pub dst: u8, /// Source register operand. pub src: u8, /// Offset operand. pub off: i16, /// Immediate value operand. pub imm: i32, } impl fmt::Debug for Insn { // Insn { opc: 191, dst: 6, src: 1, off: 0, imm: 0 } fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!( f, "Insn {{ opc: 0x{:02x?}, dst: {}, src: {}, off: 0x{:04x?}, imm: 0x{:08x?} }}", self.opc, self.dst, self.src, self.off, self.imm ) } } impl Insn { /// Turn an `Insn` back into an array of bytes. /// /// # Examples /// /// ``` /// use solana_rbpf::ebpf; /// /// let prog: &[u8] = &[ /// 0xb7, 0x12, 0x56, 0x34, 0xde, 0xbc, 0x9a, 0x78, /// ]; /// let insn = ebpf::Insn { /// opc: 0xb7, /// dst: 2, /// src: 1, /// off: 0x3456, /// imm: 0x789abcde /// }; /// assert_eq!(insn.to_array(), prog); /// ``` pub fn to_array(&self) -> [u8; INSN_SIZE] { [ self.opc, self.src.wrapping_shl(4) | self.dst, (self.off & 0xff) as u8, self.off.wrapping_shr(8) as u8, (self.imm & 0xff) as u8, (self.imm & 0xff_00).wrapping_shr(8) as u8, (self.imm as u32 & 0xff_00_00).wrapping_shr(16) as u8, (self.imm as u32 & 0xff_00_00_00).wrapping_shr(24) as u8, ] } /// Turn an `Insn` into an vector of bytes. /// /// # Examples /// /// ``` /// use solana_rbpf::ebpf; /// /// let prog: Vec<u8> = vec![ /// 0xb7, 0x12, 0x56, 0x34, 0xde, 0xbc, 0x9a, 0x78, /// ]; /// let insn = ebpf::Insn { /// opc: 0xb7, /// dst: 2, /// src: 1, /// off: 0x3456, /// imm: 0x789abcde /// }; /// assert_eq!(insn.to_vec(), prog); /// ``` pub fn to_vec(&self) -> Vec<u8> { vec![ self.opc, self.src.wrapping_shl(4) | self.dst, (self.off & 0xff) as u8, self.off.wrapping_shr(8) as u8, (self.imm & 0xff) as u8, (self.imm & 0xff_00).wrapping_shr(8) as u8, (self.imm as u32 & 0xff_00_00).wrapping_shr(16) as u8, (self.imm as u32 & 0xff_00_00_00).wrapping_shr(24) as u8, ] } } /// Get the instruction at `idx` of an eBPF program. `idx` is the index (number) of the /// instruction (not a byte offset). The first instruction has index 0. /// /// # Panics /// /// Panics if it is not possible to get the instruction (if idx is too high, or last instruction is /// incomplete). /// /// # Examples /// /// ``` /// use solana_rbpf::ebpf; /// /// let prog = &[ /// 0xb7, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /// 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /// ]; /// let insn = ebpf::get_insn(prog, 1); /// assert_eq!(insn.opc, 0x95); /// ``` /// /// The example below will panic, since the last instruction is not complete and cannot be loaded. /// /// ```rust,should_panic /// use solana_rbpf::ebpf; /// /// let prog = &[ /// 0xb7, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /// 0x95, 0x00, 0x00, 0x00, 0x00, 0x00 // two bytes missing /// ]; /// let insn = ebpf::get_insn(prog, 1); /// ``` pub fn get_insn(prog: &[u8], idx: usize) -> Insn { // This guard should not be needed in most cases, since the verifier already checks the program // size, and indexes should be fine in the interpreter/JIT. But this function is publicly // available and user can call it with any `idx`, so we have to check anyway. debug_assert!( (idx + 1) * INSN_SIZE <= prog.len(), "cannot reach instruction at index {:?} in program containing {:?} bytes", idx, prog.len() ); get_insn_unchecked(prog, idx) } /// Same as `get_insn` except not checked pub fn get_insn_unchecked(prog: &[u8], idx: usize) -> Insn { Insn { opc: prog[INSN_SIZE * idx], dst: prog[INSN_SIZE * idx + 1] & 0x0f, src: (prog[INSN_SIZE * idx + 1] & 0xf0) >> 4, off: LittleEndian::read_i16(&prog[(INSN_SIZE * idx + 2)..]), imm: LittleEndian::read_i32(&prog[(INSN_SIZE * idx + 4)..]), } } /// Return a vector of `struct Insn` built from a program. /// /// This is provided as a convenience for users wishing to manipulate a vector of instructions, for /// example for dumping the program instruction after instruction with a custom format. /// /// Note that the two parts of `LD_DW_IMM` instructions (spanning on 64 bits) are considered as two /// distinct instructions. /// /// # Examples /// /// ``` /// use solana_rbpf::ebpf; /// /// let prog = &[ /// 0x18, 0x00, 0x00, 0x00, 0x88, 0x77, 0x66, 0x55, /// 0x00, 0x00, 0x00, 0x00, 0x44, 0x33, 0x22, 0x11, /// 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /// ]; /// /// let v = ebpf::to_insn_vec(prog); /// assert_eq!(v, vec![ /// ebpf::Insn { /// opc: 0x18, /// dst: 0, /// src: 0, /// off: 0, /// imm: 0x55667788 /// }, /// ebpf::Insn { /// opc: 0, /// dst: 0, /// src: 0, /// off: 0, /// imm: 0x11223344 /// }, /// ebpf::Insn { /// opc: 0x95, /// dst: 0, /// src: 0, /// off: 0, /// imm: 0 /// }, /// ]); /// ``` pub fn to_insn_vec(prog: &[u8]) -> Vec<Insn> { debug_assert!( prog.len() % INSN_SIZE == 0, "eBPF program length {:?} must be a multiple of {:?} octets", prog.len(), INSN_SIZE ); let mut res = vec![]; let mut insn_ptr: usize = 0; while insn_ptr * INSN_SIZE < prog.len() { let insn = get_insn(prog, insn_ptr); res.push(insn); insn_ptr += 1; } res } /// Hash a symbol name /// /// This function is used by both the relocator and the VM to translate symbol names /// into a 32 bit id used to identify a syscall function. The 32 bit id is used in the /// eBPF `call` instruction's imm field. pub fn hash_symbol_name(name: &[u8]) -> u32 { let mut hasher = Murmur3Hasher::default(); Hash::hash_slice(name, &mut hasher); hasher.finish() }