use crate::{
broadcast_stage::RetransmitSlotsSender,
cache_block_time_service::CacheBlockTimeSender,
cluster_info::ClusterInfo,
cluster_info_vote_listener::VoteTracker,
cluster_slots::ClusterSlots,
commitment_service::{AggregateCommitmentService, CommitmentAggregationData},
consensus::{ComputedBankState, Stake, SwitchForkDecision, Tower, VotedStakes},
evm_services::EvmRecorderSender,
fork_choice::{ForkChoice, SelectVoteAndResetForkResult},
heaviest_subtree_fork_choice::HeaviestSubtreeForkChoice,
optimistically_confirmed_bank_tracker::{BankNotification, BankNotificationSender},
poh_recorder::{PohRecorder, GRACE_TICKS_FACTOR, MAX_GRACE_SLOTS},
progress_map::{ForkProgress, ProgressMap, PropagatedStats},
repair_service::DuplicateSlotsResetReceiver,
result::Result,
rewards_recorder_service::RewardsRecorderSender,
rpc_subscriptions::RpcSubscriptions,
};
use solana_ledger::{
block_error::BlockError,
blockstore::Blockstore,
blockstore_processor::{self, BlockstoreProcessorError, TransactionStatusSender},
entry::VerifyRecyclers,
leader_schedule_cache::LeaderScheduleCache,
};
use solana_measure::{measure::Measure, thread_mem_usage};
use solana_metrics::inc_new_counter_info;
use solana_runtime::{
accounts_background_service::AbsRequestSender, bank::Bank, bank_forks::BankForks,
commitment::BlockCommitmentCache, vote_sender_types::ReplayVoteSender,
};
use solana_sdk::{
clock::{Slot, NUM_CONSECUTIVE_LEADER_SLOTS},
hash::Hash,
pubkey::Pubkey,
signature::{Keypair, Signer},
timing::timestamp,
transaction::Transaction,
};
use solana_vote_program::{vote_instruction, vote_state::Vote};
use std::{
collections::{HashMap, HashSet},
result,
sync::{
atomic::{AtomicBool, Ordering},
mpsc::{Receiver, RecvTimeoutError, Sender},
Arc, Mutex, RwLock,
},
thread::{self, Builder, JoinHandle},
time::Duration,
};
pub const MAX_ENTRY_RECV_PER_ITER: usize = 512;
pub const SUPERMINORITY_THRESHOLD: f64 = 1f64 / 3f64;
pub const MAX_UNCONFIRMED_SLOTS: usize = 5;
#[derive(PartialEq, Debug)]
pub(crate) enum HeaviestForkFailures {
LockedOut(u64),
FailedThreshold(u64),
FailedSwitchThreshold(u64),
NoPropagatedConfirmation(u64),
}
struct Finalizer {
exit_sender: Arc<AtomicBool>,
}
impl Finalizer {
fn new(exit_sender: Arc<AtomicBool>) -> Self {
Finalizer { exit_sender }
}
}
impl Drop for Finalizer {
fn drop(&mut self) {
self.exit_sender.clone().store(true, Ordering::Relaxed);
}
}
#[derive(Default)]
struct SkippedSlotsInfo {
last_retransmit_slot: u64,
last_skipped_slot: u64,
}
pub struct ReplayStageConfig {
pub my_pubkey: Pubkey,
pub vote_account: Pubkey,
pub authorized_voter_keypairs: Vec<Arc<Keypair>>,
pub exit: Arc<AtomicBool>,
pub subscriptions: Arc<RpcSubscriptions>,
pub leader_schedule_cache: Arc<LeaderScheduleCache>,
pub latest_root_senders: Vec<Sender<Slot>>,
pub accounts_background_request_sender: AbsRequestSender,
pub block_commitment_cache: Arc<RwLock<BlockCommitmentCache>>,
pub transaction_status_sender: Option<TransactionStatusSender>,
pub rewards_recorder_sender: Option<RewardsRecorderSender>,
pub cache_block_time_sender: Option<CacheBlockTimeSender>,
pub evm_block_recorder_sender: Option<EvmRecorderSender>,
pub bank_notification_sender: Option<BankNotificationSender>,
}
#[derive(Default)]
pub struct ReplayTiming {
last_print: u64,
collect_frozen_banks_elapsed: u64,
compute_bank_stats_elapsed: u64,
select_vote_and_reset_forks_elapsed: u64,
start_leader_elapsed: u64,
reset_bank_elapsed: u64,
voting_elapsed: u64,
select_forks_elapsed: u64,
compute_slot_stats_elapsed: u64,
generate_new_bank_forks_elapsed: u64,
replay_active_banks_elapsed: u64,
reset_duplicate_slots_elapsed: u64,
wait_receive_elapsed: u64,
heaviest_fork_failures_elapsed: u64,
bank_count: u64,
}
impl ReplayTiming {
#[allow(clippy::too_many_arguments)]
fn update(
&mut self,
collect_frozen_banks_elapsed: u64,
compute_bank_stats_elapsed: u64,
select_vote_and_reset_forks_elapsed: u64,
start_leader_elapsed: u64,
reset_bank_elapsed: u64,
voting_elapsed: u64,
select_forks_elapsed: u64,
compute_slot_stats_elapsed: u64,
generate_new_bank_forks_elapsed: u64,
replay_active_banks_elapsed: u64,
reset_duplicate_slots_elapsed: u64,
wait_receive_elapsed: u64,
heaviest_fork_failures_elapsed: u64,
bank_count: u64,
) {
self.collect_frozen_banks_elapsed += collect_frozen_banks_elapsed;
self.compute_bank_stats_elapsed += compute_bank_stats_elapsed;
self.select_vote_and_reset_forks_elapsed += select_vote_and_reset_forks_elapsed;
self.start_leader_elapsed += start_leader_elapsed;
self.reset_bank_elapsed += reset_bank_elapsed;
self.voting_elapsed += voting_elapsed;
self.select_forks_elapsed += select_forks_elapsed;
self.compute_slot_stats_elapsed += compute_slot_stats_elapsed;
self.generate_new_bank_forks_elapsed += generate_new_bank_forks_elapsed;
self.replay_active_banks_elapsed += replay_active_banks_elapsed;
self.reset_duplicate_slots_elapsed += reset_duplicate_slots_elapsed;
self.wait_receive_elapsed += wait_receive_elapsed;
self.heaviest_fork_failures_elapsed += heaviest_fork_failures_elapsed;
self.bank_count += bank_count;
let now = timestamp();
let elapsed_ms = now - self.last_print;
if elapsed_ms > 1000 {
datapoint_info!(
"replay-loop-timing-stats",
("total_elapsed_us", elapsed_ms * 1000, i64),
(
"collect_frozen_banks_elapsed",
self.collect_frozen_banks_elapsed as i64,
i64
),
(
"compute_bank_stats_elapsed",
self.compute_bank_stats_elapsed as i64,
i64
),
(
"select_vote_and_reset_forks_elapsed",
self.select_vote_and_reset_forks_elapsed as i64,
i64
),
(
"start_leader_elapsed",
self.start_leader_elapsed as i64,
i64
),
("reset_bank_elapsed", self.reset_bank_elapsed as i64, i64),
("voting_elapsed", self.voting_elapsed as i64, i64),
(
"select_forks_elapsed",
self.select_forks_elapsed as i64,
i64
),
(
"compute_slot_stats_elapsed",
self.compute_slot_stats_elapsed as i64,
i64
),
(
"generate_new_bank_forks_elapsed",
self.generate_new_bank_forks_elapsed as i64,
i64
),
(
"replay_active_banks_elapsed",
self.replay_active_banks_elapsed as i64,
i64
),
(
"reset_duplicate_slots_elapsed",
self.reset_duplicate_slots_elapsed as i64,
i64
),
(
"wait_receive_elapsed",
self.wait_receive_elapsed as i64,
i64
),
(
"heaviest_fork_failures_elapsed",
self.heaviest_fork_failures_elapsed as i64,
i64
),
("bank_count", self.bank_count as i64, i64),
);
*self = ReplayTiming::default();
self.last_print = now;
}
}
}
pub struct ReplayStage {
t_replay: JoinHandle<Result<()>>,
commitment_service: AggregateCommitmentService,
}
impl ReplayStage {
#[allow(clippy::new_ret_no_self, clippy::too_many_arguments)]
pub fn new(
config: ReplayStageConfig,
blockstore: Arc<Blockstore>,
bank_forks: Arc<RwLock<BankForks>>,
cluster_info: Arc<ClusterInfo>,
ledger_signal_receiver: Receiver<bool>,
poh_recorder: Arc<Mutex<PohRecorder>>,
mut tower: Tower,
vote_tracker: Arc<VoteTracker>,
cluster_slots: Arc<ClusterSlots>,
retransmit_slots_sender: RetransmitSlotsSender,
duplicate_slots_reset_receiver: DuplicateSlotsResetReceiver,
replay_vote_sender: ReplayVoteSender,
) -> Self {
let ReplayStageConfig {
my_pubkey,
vote_account,
authorized_voter_keypairs,
exit,
subscriptions,
leader_schedule_cache,
latest_root_senders,
accounts_background_request_sender,
block_commitment_cache,
transaction_status_sender,
rewards_recorder_sender,
cache_block_time_sender,
evm_block_recorder_sender,
bank_notification_sender,
} = config;
trace!("replay stage");
let (lockouts_sender, commitment_service) = AggregateCommitmentService::new(
&exit,
block_commitment_cache.clone(),
subscriptions.clone(),
);
#[allow(clippy::cognitive_complexity)]
let t_replay = Builder::new()
.name("solana-replay-stage".to_string())
.spawn(move || {
let verify_recyclers = VerifyRecyclers::default();
let _exit = Finalizer::new(exit.clone());
let (
mut progress,
mut heaviest_subtree_fork_choice,
) = Self::initialize_progress_and_fork_choice_with_locked_bank_forks(
&bank_forks,
&my_pubkey,
&vote_account,
);
let mut current_leader = None;
let mut last_reset = Hash::default();
let mut partition_exists = false;
let mut skipped_slots_info = SkippedSlotsInfo::default();
let mut replay_timing = ReplayTiming::default();
loop {
let allocated = thread_mem_usage::Allocatedp::default();
thread_mem_usage::datapoint("solana-replay-stage");
if exit.load(Ordering::Relaxed) {
break;
}
let start = allocated.get();
let mut generate_new_bank_forks_time =
Measure::start("generate_new_bank_forks_time");
Self::generate_new_bank_forks(
&blockstore,
&bank_forks,
&leader_schedule_cache,
&subscriptions,
&mut progress,
);
generate_new_bank_forks_time.stop();
Self::report_memory(&allocated, "generate_new_bank_forks", start);
let mut tpu_has_bank = poh_recorder.lock().unwrap().has_bank();
let start = allocated.get();
let mut replay_active_banks_time = Measure::start("replay_active_banks_time");
let did_complete_bank = Self::replay_active_banks(
&blockstore,
&bank_forks,
&my_pubkey,
&vote_account,
&mut progress,
transaction_status_sender.clone(),
&verify_recyclers,
&mut heaviest_subtree_fork_choice,
&replay_vote_sender,
&bank_notification_sender,
&rewards_recorder_sender,
&subscriptions,
&evm_block_recorder_sender,
);
replay_active_banks_time.stop();
Self::report_memory(&allocated, "replay_active_banks", start);
let mut reset_duplicate_slots_time = Measure::start("reset_duplicate_slots");
let mut ancestors = bank_forks.read().unwrap().ancestors();
let mut descendants = bank_forks.read().unwrap().descendants().clone();
let forks_root = bank_forks.read().unwrap().root();
let start = allocated.get();
Self::reset_duplicate_slots(
&duplicate_slots_reset_receiver,
&mut ancestors,
&mut descendants,
&mut progress,
&bank_forks,
);
reset_duplicate_slots_time.stop();
let mut collect_frozen_banks_time = Measure::start("frozen_banks");
let mut frozen_banks: Vec<_> = bank_forks
.read()
.unwrap()
.frozen_banks()
.into_iter()
.filter(|(slot, _)| *slot >= forks_root)
.map(|(_, bank)| bank)
.collect();
collect_frozen_banks_time.stop();
let mut compute_bank_stats_time = Measure::start("compute_bank_stats");
let newly_computed_slot_stats = Self::compute_bank_stats(
&my_pubkey,
&ancestors,
&mut frozen_banks,
&tower,
&mut progress,
&vote_tracker,
&cluster_slots,
&bank_forks,
&mut heaviest_subtree_fork_choice,
);
compute_bank_stats_time.stop();
let mut compute_slot_stats_time = Measure::start("compute_slot_stats_time");
for slot in newly_computed_slot_stats {
let fork_stats = progress.get_fork_stats(slot).unwrap();
let confirmed_forks = Self::confirm_forks(
&tower,
&fork_stats.voted_stakes,
fork_stats.total_stake,
&progress,
&bank_forks,
);
for slot in confirmed_forks {
progress
.get_mut(&slot)
.unwrap()
.fork_stats
.confirmation_reported = true;
}
}
compute_slot_stats_time.stop();
let mut select_forks_time = Measure::start("select_forks_time");
let fork_choice: &mut dyn ForkChoice =
&mut heaviest_subtree_fork_choice;
let (heaviest_bank, heaviest_bank_on_same_voted_fork) = fork_choice
.select_forks(&frozen_banks, &tower, &progress, &ancestors, &bank_forks);
select_forks_time.stop();
Self::report_memory(&allocated, "select_fork", start);
let mut select_vote_and_reset_forks_time =
Measure::start("select_vote_and_reset_forks");
let SelectVoteAndResetForkResult {
vote_bank,
reset_bank,
heaviest_fork_failures,
} = Self::select_vote_and_reset_forks(
&heaviest_bank,
&heaviest_bank_on_same_voted_fork,
&ancestors,
&descendants,
&progress,
&mut tower,
);
select_vote_and_reset_forks_time.stop();
let mut heaviest_fork_failures_time = Measure::start("heaviest_fork_failures_time");
if tower.is_recent(heaviest_bank.slot()) && !heaviest_fork_failures.is_empty() {
info!(
"Couldn't vote on heaviest fork: {:?}, heaviest_fork_failures: {:?}",
heaviest_bank.slot(),
heaviest_fork_failures
);
for r in heaviest_fork_failures {
if let HeaviestForkFailures::NoPropagatedConfirmation(slot) = r {
if let Some(latest_leader_slot) =
progress.get_latest_leader_slot(slot)
{
progress.log_propagated_stats(latest_leader_slot, &bank_forks);
}
}
}
}
heaviest_fork_failures_time.stop();
let start = allocated.get();
let mut voting_time = Measure::start("voting_time");
if let Some((ref vote_bank, ref switch_fork_decision)) = vote_bank {
if let Some(votable_leader) =
leader_schedule_cache.slot_leader_at(vote_bank.slot(), Some(vote_bank))
{
Self::log_leader_change(
&my_pubkey,
vote_bank.slot(),
&mut current_leader,
&votable_leader,
);
}
Self::handle_votable_bank(
&vote_bank,
switch_fork_decision,
&bank_forks,
&mut tower,
&mut progress,
&vote_account,
&authorized_voter_keypairs,
&cluster_info,
&blockstore,
&leader_schedule_cache,
&lockouts_sender,
&accounts_background_request_sender,
&latest_root_senders,
&subscriptions,
&block_commitment_cache,
&mut heaviest_subtree_fork_choice,
&cache_block_time_sender,
&bank_notification_sender,
);
};
voting_time.stop();
Self::report_memory(&allocated, "votable_bank", start);
let start = allocated.get();
let mut reset_bank_time = Measure::start("reset_bank");
if let Some(reset_bank) = reset_bank {
if last_reset != reset_bank.last_blockhash() {
info!(
"vote bank: {:?} reset bank: {:?}",
vote_bank.as_ref().map(|(b, switch_fork_decision)| (
b.slot(),
switch_fork_decision
)),
reset_bank.slot(),
);
let fork_progress = progress
.get(&reset_bank.slot())
.expect("bank to reset to must exist in progress map");
datapoint_info!(
"blocks_produced",
("num_blocks_on_fork", fork_progress.num_blocks_on_fork, i64),
(
"num_dropped_blocks_on_fork",
fork_progress.num_dropped_blocks_on_fork,
i64
),
);
Self::reset_poh_recorder(
&my_pubkey,
&blockstore,
&reset_bank,
&poh_recorder,
&leader_schedule_cache,
);
last_reset = reset_bank.last_blockhash();
tpu_has_bank = false;
if let Some(last_voted_slot) = tower.last_voted_slot() {
let partition_detected = Self::is_partition_detected(&ancestors, last_voted_slot, heaviest_bank.slot());
if !partition_exists && partition_detected
{
warn!(
"PARTITION DETECTED waiting to join heaviest fork: {} last vote: {:?}, reset slot: {}",
heaviest_bank.slot(),
last_voted_slot,
reset_bank.slot(),
);
inc_new_counter_info!("replay_stage-partition_detected", 1);
datapoint_info!(
"replay_stage-partition",
("slot", reset_bank.slot() as i64, i64)
);
partition_exists = true;
} else if partition_exists
&& !partition_detected
{
warn!(
"PARTITION resolved heaviest fork: {} last vote: {:?}, reset slot: {}",
heaviest_bank.slot(),
last_voted_slot,
reset_bank.slot()
);
partition_exists = false;
inc_new_counter_info!("replay_stage-partition_resolved", 1);
}
}
}
Self::report_memory(&allocated, "reset_bank", start);
}
reset_bank_time.stop();
Self::report_memory(&allocated, "reset_bank", start);
let start = allocated.get();
let mut start_leader_time = Measure::start("start_leader_time");
if !tpu_has_bank {
Self::maybe_start_leader(
&my_pubkey,
&bank_forks,
&poh_recorder,
&leader_schedule_cache,
&subscriptions,
&progress,
&retransmit_slots_sender,
&mut skipped_slots_info,
);
let poh_bank = poh_recorder.lock().unwrap().bank();
if let Some(bank) = poh_bank {
Self::log_leader_change(
&my_pubkey,
bank.slot(),
&mut current_leader,
&my_pubkey,
);
}
}
start_leader_time.stop();
Self::report_memory(&allocated, "start_leader", start);
let mut wait_receive_time = Measure::start("wait_receive_time");
if !did_complete_bank {
let timer = Duration::from_millis(100);
let result = ledger_signal_receiver.recv_timeout(timer);
match result {
Err(RecvTimeoutError::Timeout) => (),
Err(_) => break,
Ok(_) => trace!("blockstore signal"),
};
}
wait_receive_time.stop();
replay_timing.update(
collect_frozen_banks_time.as_us(),
compute_bank_stats_time.as_us(),
select_vote_and_reset_forks_time.as_us(),
start_leader_time.as_us(),
reset_bank_time.as_us(),
voting_time.as_us(),
select_forks_time.as_us(),
compute_slot_stats_time.as_us(),
generate_new_bank_forks_time.as_us(),
replay_active_banks_time.as_us(),
reset_duplicate_slots_time.as_us(),
wait_receive_time.as_us(),
heaviest_fork_failures_time.as_us(),
if did_complete_bank {1} else {0},
);
}
Ok(())
})
.unwrap();
Self {
t_replay,
commitment_service,
}
}
fn is_partition_detected(
ancestors: &HashMap<Slot, HashSet<Slot>>,
last_voted_slot: Slot,
heaviest_slot: Slot,
) -> bool {
last_voted_slot != heaviest_slot
&& !ancestors
.get(&heaviest_slot)
.map(|ancestors| ancestors.contains(&last_voted_slot))
.unwrap_or(true)
}
fn initialize_progress_and_fork_choice_with_locked_bank_forks(
bank_forks: &RwLock<BankForks>,
my_pubkey: &Pubkey,
vote_account: &Pubkey,
) -> (ProgressMap, HeaviestSubtreeForkChoice) {
let (root_bank, frozen_banks) = {
let bank_forks = bank_forks.read().unwrap();
(
bank_forks.root_bank(),
bank_forks.frozen_banks().values().cloned().collect(),
)
};
Self::initialize_progress_and_fork_choice(
&root_bank,
frozen_banks,
&my_pubkey,
&vote_account,
)
}
pub(crate) fn initialize_progress_and_fork_choice(
root_bank: &Bank,
mut frozen_banks: Vec<Arc<Bank>>,
my_pubkey: &Pubkey,
vote_account: &Pubkey,
) -> (ProgressMap, HeaviestSubtreeForkChoice) {
let mut progress = ProgressMap::default();
frozen_banks.sort_by_key(|bank| bank.slot());
for bank in &frozen_banks {
let prev_leader_slot = progress.get_bank_prev_leader_slot(bank);
progress.insert(
bank.slot(),
ForkProgress::new_from_bank(
bank,
&my_pubkey,
&vote_account,
prev_leader_slot,
0,
0,
),
);
}
let root = root_bank.slot();
let heaviest_subtree_fork_choice =
HeaviestSubtreeForkChoice::new_from_frozen_banks(root, &frozen_banks);
(progress, heaviest_subtree_fork_choice)
}
fn report_memory(
allocated: &solana_measure::thread_mem_usage::Allocatedp,
name: &'static str,
start: u64,
) {
datapoint_debug!(
"replay_stage-memory",
(name, (allocated.get() - start) as i64, i64),
);
}
fn reset_duplicate_slots(
duplicate_slots_reset_receiver: &DuplicateSlotsResetReceiver,
ancestors: &mut HashMap<Slot, HashSet<Slot>>,
descendants: &mut HashMap<Slot, HashSet<Slot>>,
progress: &mut ProgressMap,
bank_forks: &RwLock<BankForks>,
) {
for duplicate_slot in duplicate_slots_reset_receiver.try_iter() {
Self::purge_unconfirmed_duplicate_slot(
duplicate_slot,
ancestors,
descendants,
progress,
bank_forks,
);
}
}
fn purge_unconfirmed_duplicate_slot(
duplicate_slot: Slot,
ancestors: &mut HashMap<Slot, HashSet<Slot>>,
descendants: &mut HashMap<Slot, HashSet<Slot>>,
progress: &mut ProgressMap,
bank_forks: &RwLock<BankForks>,
) {
warn!("purging slot {}", duplicate_slot);
let slot_descendants = descendants.get(&duplicate_slot).cloned();
if slot_descendants.is_none() {
return;
}
let slot_descendants = slot_descendants.unwrap();
Self::purge_ancestors_descendants(
duplicate_slot,
&slot_descendants,
ancestors,
descendants,
);
for d in slot_descendants
.iter()
.chain(std::iter::once(&duplicate_slot))
{
let _ = progress.remove(d);
{
let mut w_bank_forks = bank_forks.write().unwrap();
if let Some(b) = w_bank_forks.get(*d) {
b.skip_drop.store(true, Ordering::Relaxed)
}
w_bank_forks.remove(*d);
}
}
}
fn purge_ancestors_descendants(
slot: Slot,
slot_descendants: &HashSet<Slot>,
ancestors: &mut HashMap<Slot, HashSet<Slot>>,
descendants: &mut HashMap<Slot, HashSet<Slot>>,
) {
if !ancestors.contains_key(&slot) {
return;
}
for a in ancestors
.get(&slot)
.expect("must exist based on earlier check")
{
descendants
.get_mut(&a)
.expect("If exists in ancestor map must exist in descendants map")
.retain(|d| *d != slot && !slot_descendants.contains(d));
}
ancestors
.remove(&slot)
.expect("must exist based on earlier check");
for descendant in slot_descendants {
ancestors.remove(&descendant).expect("must exist");
descendants
.remove(&descendant)
.expect("must exist based on earlier check");
}
descendants
.remove(&slot)
.expect("must exist based on earlier check");
}
fn log_leader_change(
my_pubkey: &Pubkey,
bank_slot: Slot,
current_leader: &mut Option<Pubkey>,
new_leader: &Pubkey,
) {
if let Some(ref current_leader) = current_leader {
if current_leader != new_leader {
let msg = if current_leader == my_pubkey {
". I am no longer the leader"
} else if new_leader == my_pubkey {
". I am now the leader"
} else {
""
};
info!(
"LEADER CHANGE at slot: {} leader: {}{}",
bank_slot, new_leader, msg
);
}
}
current_leader.replace(new_leader.to_owned());
}
fn check_propagation_for_start_leader(
poh_slot: Slot,
parent_slot: Slot,
progress_map: &ProgressMap,
) -> bool {
if let Some(latest_leader_slot) = progress_map.get_latest_leader_slot(parent_slot) {
let skip_propagated_check =
poh_slot - latest_leader_slot < NUM_CONSECUTIVE_LEADER_SLOTS;
if skip_propagated_check {
return true;
}
}
progress_map.is_propagated(parent_slot)
}
fn should_retransmit(poh_slot: Slot, last_retransmit_slot: &mut Slot) -> bool {
if poh_slot < *last_retransmit_slot
|| poh_slot >= *last_retransmit_slot + NUM_CONSECUTIVE_LEADER_SLOTS
{
*last_retransmit_slot = poh_slot;
true
} else {
false
}
}
fn maybe_start_leader(
my_pubkey: &Pubkey,
bank_forks: &Arc<RwLock<BankForks>>,
poh_recorder: &Arc<Mutex<PohRecorder>>,
leader_schedule_cache: &Arc<LeaderScheduleCache>,
subscriptions: &Arc<RpcSubscriptions>,
progress_map: &ProgressMap,
retransmit_slots_sender: &RetransmitSlotsSender,
skipped_slots_info: &mut SkippedSlotsInfo,
) {
assert!(!poh_recorder.lock().unwrap().has_bank());
let (reached_leader_slot, _grace_ticks, poh_slot, parent_slot) =
poh_recorder.lock().unwrap().reached_leader_slot();
if !reached_leader_slot {
trace!("{} poh_recorder hasn't reached_leader_slot", my_pubkey);
return;
}
trace!("{} reached_leader_slot", my_pubkey);
let parent = bank_forks
.read()
.unwrap()
.get(parent_slot)
.expect("parent_slot doesn't exist in bank forks")
.clone();
assert!(parent.is_frozen());
if bank_forks.read().unwrap().get(poh_slot).is_some() {
warn!("{} already have bank in forks at {}?", my_pubkey, poh_slot);
return;
}
trace!(
"{} poh_slot {} parent_slot {}",
my_pubkey,
poh_slot,
parent_slot
);
if let Some(next_leader) = leader_schedule_cache.slot_leader_at(poh_slot, Some(&parent)) {
trace!(
"{} leader {} at poh slot: {}",
my_pubkey,
next_leader,
poh_slot
);
if next_leader != *my_pubkey {
return;
}
datapoint_info!(
"replay_stage-new_leader",
("slot", poh_slot, i64),
("leader", next_leader.to_string(), String),
);
if !Self::check_propagation_for_start_leader(poh_slot, parent_slot, progress_map) {
let latest_unconfirmed_leader_slot = progress_map.get_latest_leader_slot(parent_slot).expect("In order for propagated check to fail, latest leader must exist in progress map");
if poh_slot != skipped_slots_info.last_skipped_slot {
datapoint_info!(
"replay_stage-skip_leader_slot",
("slot", poh_slot, i64),
("parent_slot", parent_slot, i64),
(
"latest_unconfirmed_leader_slot",
latest_unconfirmed_leader_slot,
i64
)
);
progress_map.log_propagated_stats(latest_unconfirmed_leader_slot, bank_forks);
skipped_slots_info.last_skipped_slot = poh_slot;
}
let bank = bank_forks.read().unwrap().get(latest_unconfirmed_leader_slot)
.expect("In order for propagated check to fail, latest leader must exist in progress map, and thus also in BankForks").clone();
if Self::should_retransmit(poh_slot, &mut skipped_slots_info.last_retransmit_slot) {
datapoint_info!("replay_stage-retransmit", ("slot", bank.slot(), i64),);
retransmit_slots_sender
.send(vec![(bank.slot(), bank.clone())].into_iter().collect())
.unwrap();
}
return;
}
let root_slot = bank_forks.read().unwrap().root();
datapoint_info!("replay_stage-my_leader_slot", ("slot", poh_slot, i64),);
info!(
"new fork:{} parent:{} (leader) root:{}",
poh_slot, parent_slot, root_slot
);
let tpu_bank = Self::new_bank_from_parent_with_notify(
&parent,
poh_slot,
root_slot,
my_pubkey,
subscriptions,
);
let tpu_bank = bank_forks.write().unwrap().insert(tpu_bank);
poh_recorder.lock().unwrap().set_bank(&tpu_bank);
} else {
error!("{} No next leader found", my_pubkey);
}
}
fn replay_blockstore_into_bank(
bank: &Arc<Bank>,
blockstore: &Blockstore,
bank_progress: &mut ForkProgress,
transaction_status_sender: Option<TransactionStatusSender>,
replay_vote_sender: &ReplayVoteSender,
verify_recyclers: &VerifyRecyclers,
) -> result::Result<usize, BlockstoreProcessorError> {
let tx_count_before = bank_progress.replay_progress.num_txs;
let confirm_result = blockstore_processor::confirm_slot(
blockstore,
bank,
&mut bank_progress.replay_stats,
&mut bank_progress.replay_progress,
false,
transaction_status_sender,
Some(replay_vote_sender),
None,
verify_recyclers,
false,
);
let tx_count_after = bank_progress.replay_progress.num_txs;
let tx_count = tx_count_after - tx_count_before;
confirm_result.map_err(|err| {
let slot = bank.slot();
let is_serious = !matches!(
err,
BlockstoreProcessorError::InvalidBlock(BlockError::TooFewTicks)
);
if is_serious {
warn!("Fatal replay error in slot: {}, err: {:?}", slot, err);
} else {
info!("Slot had too few ticks: {}", slot);
}
Self::mark_dead_slot(blockstore, bank_progress, slot, &err, is_serious);
err
})?;
Ok(tx_count)
}
fn mark_dead_slot(
blockstore: &Blockstore,
bank_progress: &mut ForkProgress,
slot: Slot,
err: &BlockstoreProcessorError,
is_serious: bool,
) {
if is_serious {
datapoint_error!(
"replay-stage-mark_dead_slot",
("error", format!("error: {:?}", err), String),
("slot", slot, i64)
);
} else {
datapoint_info!(
"replay-stage-mark_dead_slot",
("error", format!("error: {:?}", err), String),
("slot", slot, i64)
);
}
bank_progress.is_dead = true;
blockstore
.set_dead_slot(slot)
.expect("Failed to mark slot as dead in blockstore");
}
#[allow(clippy::too_many_arguments)]
fn handle_votable_bank(
bank: &Arc<Bank>,
switch_fork_decision: &SwitchForkDecision,
bank_forks: &Arc<RwLock<BankForks>>,
tower: &mut Tower,
progress: &mut ProgressMap,
vote_account_pubkey: &Pubkey,
authorized_voter_keypairs: &[Arc<Keypair>],
cluster_info: &Arc<ClusterInfo>,
blockstore: &Arc<Blockstore>,
leader_schedule_cache: &Arc<LeaderScheduleCache>,
lockouts_sender: &Sender<CommitmentAggregationData>,
accounts_background_request_sender: &AbsRequestSender,
latest_root_senders: &[Sender<Slot>],
subscriptions: &Arc<RpcSubscriptions>,
block_commitment_cache: &Arc<RwLock<BlockCommitmentCache>>,
heaviest_subtree_fork_choice: &mut HeaviestSubtreeForkChoice,
cache_block_time_sender: &Option<CacheBlockTimeSender>,
bank_notification_sender: &Option<BankNotificationSender>,
) {
if bank.is_empty() {
inc_new_counter_info!("replay_stage-voted_empty_bank", 1);
}
trace!("handle votable bank {}", bank.slot());
let (vote, tower_slots) = tower.new_vote_from_bank(bank, vote_account_pubkey);
let new_root = tower.record_bank_vote(vote);
let last_vote = tower.last_vote_and_timestamp();
if let Err(err) = tower.save(&cluster_info.keypair) {
error!("Unable to save tower: {:?}", err);
std::process::exit(1);
}
if let Some(new_root) = new_root {
let root_bank = bank_forks
.read()
.unwrap()
.get(new_root)
.expect("Root bank doesn't exist")
.clone();
let mut rooted_banks = root_bank.parents();
rooted_banks.push(root_bank.clone());
let rooted_slots: Vec<_> = rooted_banks.iter().map(|bank| bank.slot()).collect();
leader_schedule_cache.set_root(rooted_banks.last().unwrap());
blockstore
.set_roots(&rooted_slots)
.expect("Ledger set roots failed");
Self::cache_block_times(
blockstore,
bank_forks,
&rooted_slots,
cache_block_time_sender,
);
let highest_confirmed_root = Some(
block_commitment_cache
.read()
.unwrap()
.highest_confirmed_root(),
);
Self::handle_new_root(
new_root,
&bank_forks,
progress,
accounts_background_request_sender,
highest_confirmed_root,
heaviest_subtree_fork_choice,
);
subscriptions.notify_roots(rooted_slots);
if let Some(sender) = bank_notification_sender {
sender
.send(BankNotification::Root(root_bank))
.unwrap_or_else(|err| warn!("bank_notification_sender failed: {:?}", err));
}
latest_root_senders.iter().for_each(|s| {
if let Err(e) = s.send(new_root) {
trace!("latest root send failed: {:?}", e);
}
});
info!("new root {}", new_root);
}
Self::update_commitment_cache(
bank.clone(),
bank_forks.read().unwrap().root(),
progress.get_fork_stats(bank.slot()).unwrap().total_stake,
lockouts_sender,
);
Self::push_vote(
cluster_info,
bank,
vote_account_pubkey,
authorized_voter_keypairs,
last_vote,
&tower_slots,
switch_fork_decision,
);
}
fn push_vote(
cluster_info: &ClusterInfo,
bank: &Arc<Bank>,
vote_account_pubkey: &Pubkey,
authorized_voter_keypairs: &[Arc<Keypair>],
vote: Vote,
tower: &[Slot],
switch_fork_decision: &SwitchForkDecision,
) {
if authorized_voter_keypairs.is_empty() {
return;
}
let vote_account = match bank.get_vote_account(vote_account_pubkey) {
None => {
warn!(
"Vote account {} does not exist. Unable to vote",
vote_account_pubkey,
);
return;
}
Some((_stake, vote_account)) => vote_account,
};
let vote_state = vote_account.vote_state();
let vote_state = match vote_state.as_ref() {
Err(_) => {
warn!(
"Vote account {} is unreadable. Unable to vote",
vote_account_pubkey,
);
return;
}
Ok(vote_state) => vote_state,
};
let authorized_voter_pubkey =
if let Some(authorized_voter_pubkey) = vote_state.get_authorized_voter(bank.epoch()) {
authorized_voter_pubkey
} else {
warn!(
"Vote account {} has no authorized voter for epoch {}. Unable to vote",
vote_account_pubkey,
bank.epoch()
);
return;
};
let authorized_voter_keypair = match authorized_voter_keypairs
.iter()
.find(|keypair| keypair.pubkey() == authorized_voter_pubkey)
{
None => {
warn!("The authorized keypair {} for vote account {} is not available. Unable to vote",
authorized_voter_pubkey, vote_account_pubkey);
return;
}
Some(authorized_voter_keypair) => authorized_voter_keypair,
};
let node_keypair = cluster_info.keypair.clone();
let vote_ix = if bank.unlock_switch_vote() {
switch_fork_decision
.to_vote_instruction(
vote,
&vote_account_pubkey,
&authorized_voter_keypair.pubkey(),
)
.expect("Switch threshold failure should not lead to voting")
} else {
vote_instruction::vote(
&vote_account_pubkey,
&authorized_voter_keypair.pubkey(),
vote,
)
};
let mut vote_tx = Transaction::new_with_payer(&[vote_ix], Some(&node_keypair.pubkey()));
let blockhash = bank.last_blockhash();
vote_tx.partial_sign(&[node_keypair.as_ref()], blockhash);
vote_tx.partial_sign(&[authorized_voter_keypair.as_ref()], blockhash);
let _ = cluster_info.send_vote(&vote_tx);
cluster_info.push_vote(tower, vote_tx);
}
fn update_commitment_cache(
bank: Arc<Bank>,
root: Slot,
total_stake: Stake,
lockouts_sender: &Sender<CommitmentAggregationData>,
) {
if let Err(e) =
lockouts_sender.send(CommitmentAggregationData::new(bank, root, total_stake))
{
trace!("lockouts_sender failed: {:?}", e);
}
}
fn reset_poh_recorder(
my_pubkey: &Pubkey,
blockstore: &Blockstore,
bank: &Arc<Bank>,
poh_recorder: &Arc<Mutex<PohRecorder>>,
leader_schedule_cache: &Arc<LeaderScheduleCache>,
) {
let next_leader_slot = leader_schedule_cache.next_leader_slot(
&my_pubkey,
bank.slot(),
&bank,
Some(blockstore),
GRACE_TICKS_FACTOR * MAX_GRACE_SLOTS,
);
poh_recorder
.lock()
.unwrap()
.reset(bank.last_blockhash(), bank.slot(), next_leader_slot);
let next_leader_msg = if let Some(next_leader_slot) = next_leader_slot {
format!("My next leader slot is {}", next_leader_slot.0)
} else {
"I am not in the leader schedule yet".to_owned()
};
info!(
"{} reset PoH to tick {} (within slot {}). {}",
my_pubkey,
bank.tick_height(),
bank.slot(),
next_leader_msg,
);
}
#[allow(clippy::too_many_arguments)]
fn replay_active_banks(
blockstore: &Arc<Blockstore>,
bank_forks: &Arc<RwLock<BankForks>>,
my_pubkey: &Pubkey,
vote_account: &Pubkey,
progress: &mut ProgressMap,
transaction_status_sender: Option<TransactionStatusSender>,
verify_recyclers: &VerifyRecyclers,
heaviest_subtree_fork_choice: &mut HeaviestSubtreeForkChoice,
replay_vote_sender: &ReplayVoteSender,
bank_notification_sender: &Option<BankNotificationSender>,
rewards_recorder_sender: &Option<RewardsRecorderSender>,
subscriptions: &Arc<RpcSubscriptions>,
evm_block_recorder_sender: &Option<EvmRecorderSender>,
) -> bool {
let mut did_complete_bank = false;
let mut tx_count = 0;
let active_banks = bank_forks.read().unwrap().active_banks();
trace!("active banks {:?}", active_banks);
for bank_slot in &active_banks {
if progress.get(bank_slot).map(|p| p.is_dead).unwrap_or(false) {
debug!("bank_slot {:?} is marked dead", *bank_slot);
continue;
}
let bank = bank_forks.read().unwrap().get(*bank_slot).unwrap().clone();
let parent_slot = bank.parent_slot();
let prev_leader_slot = progress.get_bank_prev_leader_slot(&bank);
let (num_blocks_on_fork, num_dropped_blocks_on_fork) = {
let stats = progress
.get(&parent_slot)
.expect("parent of active bank must exist in progress map");
let num_blocks_on_fork = stats.num_blocks_on_fork + 1;
let new_dropped_blocks = bank.slot() - parent_slot - 1;
let num_dropped_blocks_on_fork =
stats.num_dropped_blocks_on_fork + new_dropped_blocks;
(num_blocks_on_fork, num_dropped_blocks_on_fork)
};
let bank_progress = &mut progress.entry(bank.slot()).or_insert_with(|| {
ForkProgress::new_from_bank(
&bank,
&my_pubkey,
vote_account,
prev_leader_slot,
num_blocks_on_fork,
num_dropped_blocks_on_fork,
)
});
if bank.collector_id() != my_pubkey {
let replay_result = Self::replay_blockstore_into_bank(
&bank,
&blockstore,
bank_progress,
transaction_status_sender.clone(),
replay_vote_sender,
verify_recyclers,
);
match replay_result {
Ok(replay_tx_count) => tx_count += replay_tx_count,
Err(err) => {
trace!("replay_result err: {:?}, slot {}", err, bank_slot);
continue;
}
}
}
assert_eq!(*bank_slot, bank.slot());
if bank.is_complete() {
if !blockstore.has_duplicate_shreds_in_slot(bank.slot()) {
bank_progress.replay_stats.report_stats(
bank.slot(),
bank_progress.replay_progress.num_entries,
bank_progress.replay_progress.num_shreds,
);
did_complete_bank = true;
info!("bank frozen: {}", bank.slot());
bank.freeze();
heaviest_subtree_fork_choice
.add_new_leaf_slot(bank.slot(), Some(bank.parent_slot()));
if let Some(sender) = bank_notification_sender {
sender
.send(BankNotification::Frozen(bank.clone()))
.unwrap_or_else(|err| {
warn!("bank_notification_sender failed: {:?}", err)
});
}
Self::record_rewards(&bank, &rewards_recorder_sender);
Self::record_evm_block(&bank, &subscriptions, &evm_block_recorder_sender);
} else {
Self::mark_dead_slot(
blockstore,
bank_progress,
bank.slot(),
&BlockstoreProcessorError::InvalidBlock(BlockError::DuplicateBlock),
true,
);
warn!(
"{} duplicate shreds detected, not freezing bank {}",
my_pubkey,
bank.slot()
);
}
} else {
trace!(
"bank {} not completed tick_height: {}, max_tick_height: {}",
bank.slot(),
bank.tick_height(),
bank.max_tick_height()
);
}
}
inc_new_counter_info!("replay_stage-replay_transactions", tx_count);
did_complete_bank
}
#[allow(clippy::too_many_arguments)]
pub(crate) fn compute_bank_stats(
my_pubkey: &Pubkey,
ancestors: &HashMap<u64, HashSet<u64>>,
frozen_banks: &mut Vec<Arc<Bank>>,
tower: &Tower,
progress: &mut ProgressMap,
vote_tracker: &VoteTracker,
cluster_slots: &ClusterSlots,
bank_forks: &RwLock<BankForks>,
heaviest_subtree_fork_choice: &mut dyn ForkChoice,
) -> Vec<Slot> {
frozen_banks.sort_by_key(|bank| bank.slot());
let mut new_stats = vec![];
for bank in frozen_banks {
let bank_slot = bank.slot();
{
let is_computed = progress
.get_fork_stats_mut(bank_slot)
.expect("All frozen banks must exist in the Progress map")
.computed;
if !is_computed {
let computed_bank_state = Tower::collect_vote_lockouts(
my_pubkey,
bank_slot,
bank.vote_accounts().into_iter(),
&ancestors,
);
heaviest_subtree_fork_choice.compute_bank_stats(
&bank,
tower,
progress,
&computed_bank_state,
);
let ComputedBankState {
voted_stakes,
total_stake,
lockout_intervals,
..
} = computed_bank_state;
let stats = progress
.get_fork_stats_mut(bank_slot)
.expect("All frozen banks must exist in the Progress map");
stats.total_stake = total_stake;
stats.voted_stakes = voted_stakes;
stats.lockout_intervals = lockout_intervals;
stats.block_height = bank.block_height();
stats.computed = true;
new_stats.push(bank_slot);
datapoint_info!(
"bank_weight",
("slot", bank_slot, i64),
("weight", format!("{:X}", stats.weight), String),
);
info!(
"{} slot_weight: {} {} {} {}",
my_pubkey,
bank_slot,
stats.weight,
stats.fork_weight,
bank.parent().map(|b| b.slot()).unwrap_or(0)
);
}
}
Self::update_propagation_status(
progress,
bank_slot,
bank_forks,
vote_tracker,
cluster_slots,
);
let stats = progress
.get_fork_stats_mut(bank_slot)
.expect("All frozen banks must exist in the Progress map");
stats.vote_threshold =
tower.check_vote_stake_threshold(bank_slot, &stats.voted_stakes, stats.total_stake);
stats.is_locked_out = tower.is_locked_out(bank_slot, &ancestors);
stats.has_voted = tower.has_voted(bank_slot);
stats.is_recent = tower.is_recent(bank_slot);
}
new_stats
}
fn update_propagation_status(
progress: &mut ProgressMap,
slot: Slot,
bank_forks: &RwLock<BankForks>,
vote_tracker: &VoteTracker,
cluster_slots: &ClusterSlots,
) {
if progress.is_propagated(slot) {
return;
}
let mut slot_vote_tracker = progress
.get_propagated_stats(slot)
.expect("All frozen banks must exist in the Progress map")
.slot_vote_tracker
.clone();
if slot_vote_tracker.is_none() {
slot_vote_tracker = vote_tracker.get_slot_vote_tracker(slot);
progress
.get_propagated_stats_mut(slot)
.expect("All frozen banks must exist in the Progress map")
.slot_vote_tracker = slot_vote_tracker.clone();
}
let mut cluster_slot_pubkeys = progress
.get_propagated_stats(slot)
.expect("All frozen banks must exist in the Progress map")
.cluster_slot_pubkeys
.clone();
if cluster_slot_pubkeys.is_none() {
cluster_slot_pubkeys = cluster_slots.lookup(slot);
progress
.get_propagated_stats_mut(slot)
.expect("All frozen banks must exist in the Progress map")
.cluster_slot_pubkeys = cluster_slot_pubkeys.clone();
}
let newly_voted_pubkeys = slot_vote_tracker
.as_ref()
.and_then(|slot_vote_tracker| slot_vote_tracker.write().unwrap().get_updates())
.unwrap_or_default();
let cluster_slot_pubkeys = cluster_slot_pubkeys
.map(|v| v.read().unwrap().keys().cloned().collect())
.unwrap_or_default();
Self::update_fork_propagated_threshold_from_votes(
progress,
newly_voted_pubkeys,
cluster_slot_pubkeys,
slot,
bank_forks,
);
}
pub(crate) fn select_vote_and_reset_forks(
heaviest_bank: &Arc<Bank>,
heaviest_bank_on_same_voted_fork: &Option<Arc<Bank>>,
ancestors: &HashMap<u64, HashSet<u64>>,
descendants: &HashMap<u64, HashSet<u64>>,
progress: &ProgressMap,
tower: &mut Tower,
) -> SelectVoteAndResetForkResult {
let mut failure_reasons = vec![];
let selected_fork = {
let switch_fork_decision = tower.check_switch_threshold(
heaviest_bank.slot(),
&ancestors,
&descendants,
&progress,
heaviest_bank.total_epoch_stake(),
heaviest_bank
.epoch_vote_accounts(heaviest_bank.epoch())
.expect("Bank epoch vote accounts must contain entry for the bank's own epoch"),
);
if let SwitchForkDecision::FailedSwitchThreshold(_, _) = switch_fork_decision {
info!(
"Waiting to switch vote to {}, resetting to slot {:?} on same fork for now",
heaviest_bank.slot(),
heaviest_bank_on_same_voted_fork.as_ref().map(|b| b.slot())
);
failure_reasons.push(HeaviestForkFailures::FailedSwitchThreshold(
heaviest_bank.slot(),
));
heaviest_bank_on_same_voted_fork
.as_ref()
.map(|b| (b, switch_fork_decision))
} else {
Some((heaviest_bank, switch_fork_decision))
}
};
if let Some((bank, switch_fork_decision)) = selected_fork {
let (is_locked_out, vote_threshold, is_leader_slot, fork_weight) = {
let fork_stats = progress.get_fork_stats(bank.slot()).unwrap();
let propagated_stats = &progress.get_propagated_stats(bank.slot()).unwrap();
(
fork_stats.is_locked_out,
fork_stats.vote_threshold,
propagated_stats.is_leader_slot,
fork_stats.weight,
)
};
let propagation_confirmed = is_leader_slot || progress.is_propagated(bank.slot());
if is_locked_out {
failure_reasons.push(HeaviestForkFailures::LockedOut(bank.slot()));
}
if !vote_threshold {
failure_reasons.push(HeaviestForkFailures::FailedThreshold(bank.slot()));
}
if !propagation_confirmed {
failure_reasons.push(HeaviestForkFailures::NoPropagatedConfirmation(bank.slot()));
}
if !is_locked_out
&& vote_threshold
&& propagation_confirmed
&& switch_fork_decision.can_vote()
{
info!("voting: {} {}", bank.slot(), fork_weight);
SelectVoteAndResetForkResult {
vote_bank: Some((bank.clone(), switch_fork_decision)),
reset_bank: Some(bank.clone()),
heaviest_fork_failures: failure_reasons,
}
} else {
SelectVoteAndResetForkResult {
vote_bank: None,
reset_bank: Some(bank.clone()),
heaviest_fork_failures: failure_reasons,
}
}
} else {
SelectVoteAndResetForkResult {
vote_bank: None,
reset_bank: None,
heaviest_fork_failures: failure_reasons,
}
}
}
fn update_fork_propagated_threshold_from_votes(
progress: &mut ProgressMap,
mut newly_voted_pubkeys: Vec<Pubkey>,
mut cluster_slot_pubkeys: Vec<Pubkey>,
fork_tip: Slot,
bank_forks: &RwLock<BankForks>,
) {
let mut current_leader_slot = progress.get_latest_leader_slot(fork_tip);
let mut did_newly_reach_threshold = false;
let root = bank_forks.read().unwrap().root();
loop {
if current_leader_slot == None || current_leader_slot.unwrap() < root {
break;
}
let leader_propagated_stats = progress
.get_propagated_stats_mut(current_leader_slot.unwrap())
.expect("current_leader_slot >= root, so must exist in the progress map");
if leader_propagated_stats.is_propagated ||
(newly_voted_pubkeys.is_empty() && cluster_slot_pubkeys.is_empty() &&
!did_newly_reach_threshold)
{
break;
}
assert!(leader_propagated_stats.is_leader_slot);
let leader_bank = bank_forks
.read()
.unwrap()
.get(current_leader_slot.unwrap())
.expect("Entry in progress map must exist in BankForks")
.clone();
did_newly_reach_threshold = Self::update_slot_propagated_threshold_from_votes(
&mut newly_voted_pubkeys,
&mut cluster_slot_pubkeys,
&leader_bank,
leader_propagated_stats,
did_newly_reach_threshold,
) || did_newly_reach_threshold;
current_leader_slot = leader_propagated_stats.prev_leader_slot;
}
}
fn update_slot_propagated_threshold_from_votes(
newly_voted_pubkeys: &mut Vec<Pubkey>,
cluster_slot_pubkeys: &mut Vec<Pubkey>,
leader_bank: &Bank,
leader_propagated_stats: &mut PropagatedStats,
did_child_reach_threshold: bool,
) -> bool {
let mut did_newly_reach_threshold = false;
if did_child_reach_threshold {
if !leader_propagated_stats.is_propagated {
leader_propagated_stats.is_propagated = true;
return true;
} else {
return false;
}
}
if leader_propagated_stats.is_propagated {
return false;
}
newly_voted_pubkeys.retain(|vote_pubkey| {
let exists = leader_propagated_stats
.propagated_validators
.contains(vote_pubkey);
leader_propagated_stats.add_vote_pubkey(
*vote_pubkey,
leader_bank.epoch_vote_account_stake(&vote_pubkey),
);
!exists
});
cluster_slot_pubkeys.retain(|node_pubkey| {
let exists = leader_propagated_stats
.propagated_node_ids
.contains(node_pubkey);
leader_propagated_stats.add_node_pubkey(&*node_pubkey, leader_bank);
!exists
});
if leader_propagated_stats.total_epoch_stake == 0
|| leader_propagated_stats.propagated_validators_stake as f64
/ leader_propagated_stats.total_epoch_stake as f64
> SUPERMINORITY_THRESHOLD
{
leader_propagated_stats.is_propagated = true;
did_newly_reach_threshold = true
}
did_newly_reach_threshold
}
fn confirm_forks(
tower: &Tower,
voted_stakes: &VotedStakes,
total_stake: Stake,
progress: &ProgressMap,
bank_forks: &RwLock<BankForks>,
) -> Vec<Slot> {
let mut confirmed_forks = vec![];
for (slot, prog) in progress.iter() {
if !prog.fork_stats.confirmation_reported {
let bank = bank_forks
.read()
.unwrap()
.get(*slot)
.expect("bank in progress must exist in BankForks")
.clone();
let duration = prog.replay_stats.started.elapsed().as_millis();
if bank.is_frozen() && tower.is_slot_confirmed(*slot, voted_stakes, total_stake) {
info!("validator fork confirmed {} {}ms", *slot, duration);
datapoint_info!("validator-confirmation", ("duration_ms", duration, i64));
confirmed_forks.push(*slot);
} else {
debug!(
"validator fork not confirmed {} {}ms {:?}",
*slot,
duration,
voted_stakes.get(slot)
);
}
}
}
confirmed_forks
}
pub(crate) fn handle_new_root(
new_root: Slot,
bank_forks: &RwLock<BankForks>,
progress: &mut ProgressMap,
accounts_background_request_sender: &AbsRequestSender,
highest_confirmed_root: Option<Slot>,
heaviest_subtree_fork_choice: &mut HeaviestSubtreeForkChoice,
) {
bank_forks.write().unwrap().set_root(
new_root,
accounts_background_request_sender,
highest_confirmed_root,
);
let r_bank_forks = bank_forks.read().unwrap();
progress.handle_new_root(&r_bank_forks);
heaviest_subtree_fork_choice.set_root(new_root);
}
fn generate_new_bank_forks(
blockstore: &Blockstore,
bank_forks: &RwLock<BankForks>,
leader_schedule_cache: &Arc<LeaderScheduleCache>,
subscriptions: &Arc<RpcSubscriptions>,
progress: &mut ProgressMap,
) {
let forks = bank_forks.read().unwrap();
let frozen_banks = forks.frozen_banks();
let frozen_bank_slots: Vec<u64> = frozen_banks
.keys()
.cloned()
.filter(|s| *s >= forks.root())
.collect();
let next_slots = blockstore
.get_slots_since(&frozen_bank_slots)
.expect("Db error");
trace!("generate new forks {:?}", {
let mut next_slots = next_slots.iter().collect::<Vec<_>>();
next_slots.sort();
next_slots
});
let mut new_banks = HashMap::new();
for (parent_slot, children) in next_slots {
let parent_bank = frozen_banks
.get(&parent_slot)
.expect("missing parent in bank forks")
.clone();
for child_slot in children {
if forks.get(child_slot).is_some() || new_banks.get(&child_slot).is_some() {
trace!("child already active or frozen {}", child_slot);
continue;
}
let leader = leader_schedule_cache
.slot_leader_at(child_slot, Some(&parent_bank))
.unwrap();
info!(
"new fork:{} parent:{} root:{}",
child_slot,
parent_slot,
forks.root()
);
let child_bank = Self::new_bank_from_parent_with_notify(
&parent_bank,
child_slot,
forks.root(),
&leader,
subscriptions,
);
let empty: Vec<Pubkey> = vec![];
Self::update_fork_propagated_threshold_from_votes(
progress,
empty,
vec![leader],
parent_bank.slot(),
bank_forks,
);
new_banks.insert(child_slot, child_bank);
}
}
drop(forks);
let mut forks = bank_forks.write().unwrap();
for (_, bank) in new_banks {
forks.insert(bank);
}
}
fn new_bank_from_parent_with_notify(
parent: &Arc<Bank>,
slot: u64,
root_slot: u64,
leader: &Pubkey,
subscriptions: &Arc<RpcSubscriptions>,
) -> Bank {
subscriptions.notify_slot(slot, parent.slot(), root_slot);
Bank::new_from_parent(parent, leader, slot)
}
fn record_rewards(bank: &Bank, rewards_recorder_sender: &Option<RewardsRecorderSender>) {
if let Some(rewards_recorder_sender) = rewards_recorder_sender {
let rewards = bank.rewards.read().unwrap();
if !rewards.is_empty() {
rewards_recorder_sender
.send((bank.slot(), rewards.clone()))
.unwrap_or_else(|err| warn!("rewards_recorder_sender failed: {:?}", err));
}
}
}
fn record_evm_block(
bank: &Bank,
subscriptions: &Arc<RpcSubscriptions>,
evm_block_recorder_sender: &Option<EvmRecorderSender>,
) {
if let Some(evm_block_recorder_sender) = evm_block_recorder_sender {
let block = bank.evm_block();
if let Some(block) = block {
subscriptions.notify_evm_block(block.clone());
evm_block_recorder_sender
.send(block)
.unwrap_or_else(|err| warn!("evm_block_recorder_sender failed: {:?}", err));
}
}
}
fn cache_block_times(
blockstore: &Arc<Blockstore>,
bank_forks: &Arc<RwLock<BankForks>>,
rooted_slots: &[Slot],
cache_block_time_sender: &Option<CacheBlockTimeSender>,
) {
if let Some(cache_block_time_sender) = cache_block_time_sender {
for slot in rooted_slots {
if blockstore
.get_block_time(*slot)
.unwrap_or_default()
.is_none()
{
if let Some(rooted_bank) = bank_forks.read().unwrap().get(*slot) {
cache_block_time_sender
.send(rooted_bank.clone())
.unwrap_or_else(|err| {
warn!("cache_block_time_sender failed: {:?}", err)
});
} else {
error!(
"rooted_bank {:?} not available in BankForks; block time not cached",
slot
);
}
}
}
}
}
pub fn join(self) -> thread::Result<()> {
self.commitment_service.join()?;
self.t_replay.join().map(|_| ())
}
}
#[cfg(test)]
pub(crate) mod tests {
use super::*;
use crate::{
consensus::test::{initialize_state, VoteSimulator},
consensus::Tower,
optimistically_confirmed_bank_tracker::OptimisticallyConfirmedBank,
progress_map::ValidatorStakeInfo,
replay_stage::ReplayStage,
transaction_status_service::TransactionStatusService,
};
use crossbeam_channel::unbounded;
use solana_ledger::{
blockstore::make_slot_entries,
blockstore::{entries_to_test_shreds, BlockstoreError},
create_new_tmp_ledger,
entry::{self, next_entry, Entry},
genesis_utils::{create_genesis_config, create_genesis_config_with_leader},
get_tmp_ledger_path,
shred::{
CodingShredHeader, DataShredHeader, Shred, ShredCommonHeader, DATA_COMPLETE_SHRED,
SIZE_OF_COMMON_SHRED_HEADER, SIZE_OF_DATA_SHRED_HEADER, SIZE_OF_DATA_SHRED_PAYLOAD,
},
};
use solana_runtime::{
accounts_background_service::AbsRequestSender,
commitment::BlockCommitment,
genesis_utils::{self, GenesisConfigInfo, ValidatorVoteKeypairs},
};
use solana_sdk::{
clock::NUM_CONSECUTIVE_LEADER_SLOTS,
genesis_config,
hash::{hash, Hash},
instruction::InstructionError,
packet::PACKET_DATA_SIZE,
signature::{Keypair, Signature, Signer},
system_transaction,
transaction::TransactionError,
};
use solana_transaction_status::TransactionWithStatusMeta;
use solana_vote_program::{
vote_state::{VoteState, VoteStateVersions},
vote_transaction,
};
use std::{
fs::remove_dir_all,
iter,
sync::{Arc, RwLock},
};
use trees::tr;
#[test]
fn test_is_partition_detected() {
let (bank_forks, _) = setup_forks();
let ancestors = bank_forks.read().unwrap().ancestors();
assert!(!ReplayStage::is_partition_detected(&ancestors, 1, 3));
assert!(!ReplayStage::is_partition_detected(&ancestors, 3, 3));
assert!(ReplayStage::is_partition_detected(&ancestors, 2, 3));
assert!(ReplayStage::is_partition_detected(&ancestors, 4, 3));
}
struct ReplayBlockstoreComponents {
blockstore: Arc<Blockstore>,
validator_voting_keys: HashMap<Pubkey, Pubkey>,
progress: ProgressMap,
bank_forks: Arc<RwLock<BankForks>>,
leader_schedule_cache: Arc<LeaderScheduleCache>,
rpc_subscriptions: Arc<RpcSubscriptions>,
}
fn replay_blockstore_components() -> ReplayBlockstoreComponents {
let ledger_path = get_tmp_ledger_path!();
let blockstore = Arc::new(
Blockstore::open(&ledger_path).expect("Expected to be able to open database ledger"),
);
let validator_authorized_voter_keypairs: Vec<_> =
(0..20).map(|_| ValidatorVoteKeypairs::new_rand()).collect();
let validator_voting_keys: HashMap<_, _> = validator_authorized_voter_keypairs
.iter()
.map(|v| (v.node_keypair.pubkey(), v.vote_keypair.pubkey()))
.collect();
let GenesisConfigInfo { genesis_config, .. } =
genesis_utils::create_genesis_config_with_vote_accounts(
10_000,
&validator_authorized_voter_keypairs,
vec![100; validator_authorized_voter_keypairs.len()],
);
let bank0 = Bank::new(&genesis_config);
let mut progress = ProgressMap::default();
progress.insert(
0,
ForkProgress::new_from_bank(
&bank0,
bank0.collector_id(),
&Pubkey::default(),
None,
0,
0,
),
);
let leader_schedule_cache = Arc::new(LeaderScheduleCache::new_from_bank(&bank0));
let bank_forks = Arc::new(RwLock::new(BankForks::new(bank0)));
let optimistically_confirmed_bank =
OptimisticallyConfirmedBank::locked_from_bank_forks_root(&bank_forks);
let exit = Arc::new(AtomicBool::new(false));
let rpc_subscriptions = Arc::new(RpcSubscriptions::new(
&exit,
bank_forks.clone(),
Arc::new(RwLock::new(BlockCommitmentCache::default())),
optimistically_confirmed_bank,
));
ReplayBlockstoreComponents {
blockstore,
validator_voting_keys,
progress,
bank_forks,
leader_schedule_cache,
rpc_subscriptions,
}
}
#[test]
fn test_child_slots_of_same_parent() {
let ReplayBlockstoreComponents {
blockstore,
validator_voting_keys,
mut progress,
bank_forks,
leader_schedule_cache,
rpc_subscriptions,
} = replay_blockstore_components();
let bank1 = Bank::new_from_parent(
bank_forks.read().unwrap().get(0).unwrap(),
&leader_schedule_cache.slot_leader_at(1, None).unwrap(),
1,
);
progress.insert(
1,
ForkProgress::new_from_bank(
&bank1,
bank1.collector_id(),
validator_voting_keys.get(&bank1.collector_id()).unwrap(),
Some(0),
0,
0,
),
);
assert!(progress.get_propagated_stats(1).unwrap().is_leader_slot);
bank1.freeze();
bank_forks.write().unwrap().insert(bank1);
let (shreds, _) = make_slot_entries(NUM_CONSECUTIVE_LEADER_SLOTS, 1, 8);
blockstore.insert_shreds(shreds, None, false).unwrap();
assert!(bank_forks
.read()
.unwrap()
.get(NUM_CONSECUTIVE_LEADER_SLOTS)
.is_none());
ReplayStage::generate_new_bank_forks(
&blockstore,
&bank_forks,
&leader_schedule_cache,
&rpc_subscriptions,
&mut progress,
);
assert!(bank_forks
.read()
.unwrap()
.get(NUM_CONSECUTIVE_LEADER_SLOTS)
.is_some());
let (shreds, _) = make_slot_entries(2 * NUM_CONSECUTIVE_LEADER_SLOTS, 1, 8);
blockstore.insert_shreds(shreds, None, false).unwrap();
assert!(bank_forks
.read()
.unwrap()
.get(2 * NUM_CONSECUTIVE_LEADER_SLOTS)
.is_none());
ReplayStage::generate_new_bank_forks(
&blockstore,
&bank_forks,
&leader_schedule_cache,
&rpc_subscriptions,
&mut progress,
);
assert!(bank_forks
.read()
.unwrap()
.get(NUM_CONSECUTIVE_LEADER_SLOTS)
.is_some());
assert!(bank_forks
.read()
.unwrap()
.get(2 * NUM_CONSECUTIVE_LEADER_SLOTS)
.is_some());
let expected_leader_slots = vec![
1,
NUM_CONSECUTIVE_LEADER_SLOTS,
2 * NUM_CONSECUTIVE_LEADER_SLOTS,
];
for slot in expected_leader_slots {
let leader = leader_schedule_cache.slot_leader_at(slot, None).unwrap();
let vote_key = validator_voting_keys.get(&leader).unwrap();
assert!(progress
.get_propagated_stats(1)
.unwrap()
.propagated_validators
.contains(vote_key));
}
}
#[test]
fn test_handle_new_root() {
let genesis_config = create_genesis_config(10_000).genesis_config;
let bank0 = Bank::new(&genesis_config);
let bank_forks = Arc::new(RwLock::new(BankForks::new(bank0)));
let root = 3;
let mut heaviest_subtree_fork_choice = HeaviestSubtreeForkChoice::new(root);
let root_bank = Bank::new_from_parent(
bank_forks.read().unwrap().get(0).unwrap(),
&Pubkey::default(),
root,
);
bank_forks.write().unwrap().insert(root_bank);
let mut progress = ProgressMap::default();
for i in 0..=root {
progress.insert(i, ForkProgress::new(Hash::default(), None, None, 0, 0));
}
ReplayStage::handle_new_root(
root,
&bank_forks,
&mut progress,
&AbsRequestSender::default(),
None,
&mut heaviest_subtree_fork_choice,
);
assert_eq!(bank_forks.read().unwrap().root(), root);
assert_eq!(progress.len(), 1);
assert!(progress.get(&root).is_some());
}
#[test]
fn test_handle_new_root_ahead_of_highest_confirmed_root() {
let genesis_config = create_genesis_config(10_000).genesis_config;
let bank0 = Bank::new(&genesis_config);
let bank_forks = Arc::new(RwLock::new(BankForks::new(bank0)));
let confirmed_root = 1;
let fork = 2;
let bank1 = Bank::new_from_parent(
bank_forks.read().unwrap().get(0).unwrap(),
&Pubkey::default(),
confirmed_root,
);
bank_forks.write().unwrap().insert(bank1);
let bank2 = Bank::new_from_parent(
bank_forks.read().unwrap().get(confirmed_root).unwrap(),
&Pubkey::default(),
fork,
);
bank_forks.write().unwrap().insert(bank2);
let root = 3;
let root_bank = Bank::new_from_parent(
bank_forks.read().unwrap().get(confirmed_root).unwrap(),
&Pubkey::default(),
root,
);
bank_forks.write().unwrap().insert(root_bank);
let mut heaviest_subtree_fork_choice = HeaviestSubtreeForkChoice::new(root);
let mut progress = ProgressMap::default();
for i in 0..=root {
progress.insert(i, ForkProgress::new(Hash::default(), None, None, 0, 0));
}
ReplayStage::handle_new_root(
root,
&bank_forks,
&mut progress,
&AbsRequestSender::default(),
Some(confirmed_root),
&mut heaviest_subtree_fork_choice,
);
assert_eq!(bank_forks.read().unwrap().root(), root);
assert!(bank_forks.read().unwrap().get(confirmed_root).is_some());
assert!(bank_forks.read().unwrap().get(fork).is_none());
assert_eq!(progress.len(), 2);
assert!(progress.get(&root).is_some());
assert!(progress.get(&confirmed_root).is_some());
assert!(progress.get(&fork).is_none());
}
#[test]
fn test_dead_fork_transaction_error() {
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let missing_keypair = Keypair::new();
let missing_keypair2 = Keypair::new();
let res = check_dead_fork(|_keypair, bank| {
let blockhash = bank.last_blockhash();
let slot = bank.slot();
let hashes_per_tick = bank.hashes_per_tick().unwrap_or(0);
let entry = entry::next_entry(
&blockhash,
hashes_per_tick.saturating_sub(1),
vec![
system_transaction::transfer(&keypair1, &keypair2.pubkey(), 2, blockhash),
system_transaction::transfer(
&missing_keypair,
&missing_keypair2.pubkey(),
2,
blockhash,
),
],
);
entries_to_test_shreds(vec![entry], slot, slot.saturating_sub(1), false, 0)
});
assert_matches!(
res,
Err(BlockstoreProcessorError::InvalidTransaction(
TransactionError::AccountNotFound
))
);
}
#[test]
fn test_dead_fork_entry_verification_failure() {
let keypair2 = Keypair::new();
let res = check_dead_fork(|genesis_keypair, bank| {
let blockhash = bank.last_blockhash();
let slot = bank.slot();
let bad_hash = hash(&[2; 30]);
let hashes_per_tick = bank.hashes_per_tick().unwrap_or(0);
let entry = entry::next_entry(
&bad_hash,
hashes_per_tick.saturating_sub(1),
vec![system_transaction::transfer(
&genesis_keypair,
&keypair2.pubkey(),
2,
blockhash,
)],
);
entries_to_test_shreds(vec![entry], slot, slot.saturating_sub(1), false, 0)
});
if let Err(BlockstoreProcessorError::InvalidBlock(block_error)) = res {
assert_eq!(block_error, BlockError::InvalidEntryHash);
} else {
panic!();
}
}
#[test]
fn test_dead_fork_invalid_tick_hash_count() {
let res = check_dead_fork(|_keypair, bank| {
let blockhash = bank.last_blockhash();
let slot = bank.slot();
let hashes_per_tick = bank.hashes_per_tick().unwrap_or(0);
assert!(hashes_per_tick > 0);
let too_few_hashes_tick = Entry::new(&blockhash, hashes_per_tick - 1, vec![]);
entries_to_test_shreds(
vec![too_few_hashes_tick],
slot,
slot.saturating_sub(1),
false,
0,
)
});
if let Err(BlockstoreProcessorError::InvalidBlock(block_error)) = res {
assert_eq!(block_error, BlockError::InvalidTickHashCount);
} else {
panic!();
}
}
#[test]
fn test_dead_fork_invalid_slot_tick_count() {
solana_logger::setup();
let res = check_dead_fork(|_keypair, bank| {
let blockhash = bank.last_blockhash();
let slot = bank.slot();
let hashes_per_tick = bank.hashes_per_tick().unwrap_or(0);
entries_to_test_shreds(
entry::create_ticks(bank.ticks_per_slot() + 1, hashes_per_tick, blockhash),
slot,
slot.saturating_sub(1),
false,
0,
)
});
if let Err(BlockstoreProcessorError::InvalidBlock(block_error)) = res {
assert_eq!(block_error, BlockError::TooManyTicks);
} else {
panic!();
}
let res = check_dead_fork(|_keypair, bank| {
let blockhash = bank.last_blockhash();
let slot = bank.slot();
let hashes_per_tick = bank.hashes_per_tick().unwrap_or(0);
entries_to_test_shreds(
entry::create_ticks(bank.ticks_per_slot() - 1, hashes_per_tick, blockhash),
slot,
slot.saturating_sub(1),
true,
0,
)
});
if let Err(BlockstoreProcessorError::InvalidBlock(block_error)) = res {
assert_eq!(block_error, BlockError::TooFewTicks);
} else {
panic!();
}
}
#[test]
fn test_dead_fork_invalid_last_tick() {
let res = check_dead_fork(|_keypair, bank| {
let blockhash = bank.last_blockhash();
let slot = bank.slot();
let hashes_per_tick = bank.hashes_per_tick().unwrap_or(0);
entries_to_test_shreds(
entry::create_ticks(bank.ticks_per_slot(), hashes_per_tick, blockhash),
slot,
slot.saturating_sub(1),
false,
0,
)
});
if let Err(BlockstoreProcessorError::InvalidBlock(block_error)) = res {
assert_eq!(block_error, BlockError::InvalidLastTick);
} else {
panic!();
}
}
#[test]
fn test_dead_fork_trailing_entry() {
let keypair = Keypair::new();
let res = check_dead_fork(|genesis_keypair, bank| {
let blockhash = bank.last_blockhash();
let slot = bank.slot();
let hashes_per_tick = bank.hashes_per_tick().unwrap_or(0);
let mut entries =
entry::create_ticks(bank.ticks_per_slot(), hashes_per_tick, blockhash);
let last_entry_hash = entries.last().unwrap().hash;
let tx =
system_transaction::transfer(&genesis_keypair, &keypair.pubkey(), 2, blockhash);
let trailing_entry = entry::next_entry(&last_entry_hash, 1, vec![tx]);
entries.push(trailing_entry);
entries_to_test_shreds(entries, slot, slot.saturating_sub(1), true, 0)
});
if let Err(BlockstoreProcessorError::InvalidBlock(block_error)) = res {
assert_eq!(block_error, BlockError::TrailingEntry);
} else {
panic!();
}
}
#[test]
fn test_dead_fork_entry_deserialize_failure() {
let res = check_dead_fork(|_, _| {
let payload_len = SIZE_OF_DATA_SHRED_PAYLOAD;
let gibberish = [0xa5u8; PACKET_DATA_SIZE];
let mut data_header = DataShredHeader::default();
data_header.flags |= DATA_COMPLETE_SHRED;
let mut shred = Shred::new_empty_from_header(
ShredCommonHeader::default(),
data_header,
CodingShredHeader::default(),
);
bincode::serialize_into(
&mut shred.payload[SIZE_OF_COMMON_SHRED_HEADER + SIZE_OF_DATA_SHRED_HEADER..],
&gibberish[..payload_len],
)
.unwrap();
vec![shred]
});
assert_matches!(
res,
Err(BlockstoreProcessorError::FailedToLoadEntries(
BlockstoreError::InvalidShredData(_)
),)
);
}
fn check_dead_fork<F>(shred_to_insert: F) -> result::Result<(), BlockstoreProcessorError>
where
F: Fn(&Keypair, Arc<Bank>) -> Vec<Shred>,
{
let ledger_path = get_tmp_ledger_path!();
let (replay_vote_sender, _replay_vote_receiver) = unbounded();
let res = {
let blockstore = Arc::new(
Blockstore::open(&ledger_path)
.expect("Expected to be able to open database ledger"),
);
let GenesisConfigInfo {
mut genesis_config,
mint_keypair,
..
} = create_genesis_config(1000);
genesis_config.poh_config.hashes_per_tick = Some(2);
let bank0 = Arc::new(Bank::new(&genesis_config));
let mut progress = ProgressMap::default();
let last_blockhash = bank0.last_blockhash();
let mut bank0_progress = progress
.entry(bank0.slot())
.or_insert_with(|| ForkProgress::new(last_blockhash, None, None, 0, 0));
let shreds = shred_to_insert(&mint_keypair, bank0.clone());
blockstore.insert_shreds(shreds, None, false).unwrap();
let res = ReplayStage::replay_blockstore_into_bank(
&bank0,
&blockstore,
&mut bank0_progress,
None,
&replay_vote_sender,
&&VerifyRecyclers::default(),
);
assert!(progress
.get(&bank0.slot())
.map(|b| b.is_dead)
.unwrap_or(false));
assert!(blockstore.is_dead(bank0.slot()));
res.map(|_| ())
};
let _ignored = remove_dir_all(&ledger_path);
res
}
#[test]
fn test_replay_commitment_cache() {
fn leader_vote(vote_slot: Slot, bank: &Arc<Bank>, pubkey: &Pubkey) {
let mut leader_vote_account = bank.get_account(&pubkey).unwrap();
let mut vote_state = VoteState::from(&leader_vote_account).unwrap();
vote_state.process_slot_vote_unchecked(vote_slot);
let versioned = VoteStateVersions::new_current(vote_state);
VoteState::to(&versioned, &mut leader_vote_account).unwrap();
bank.store_account(&pubkey, &leader_vote_account);
}
let leader_pubkey = solana_sdk::pubkey::new_rand();
let leader_lamports = 3;
let genesis_config_info =
create_genesis_config_with_leader(50, &leader_pubkey, leader_lamports);
let mut genesis_config = genesis_config_info.genesis_config;
let leader_voting_pubkey = genesis_config_info.voting_keypair.pubkey();
genesis_config.epoch_schedule.warmup = false;
genesis_config.ticks_per_slot = 4;
let bank0 = Bank::new(&genesis_config);
for _ in 0..genesis_config.ticks_per_slot {
bank0.register_tick(&Hash::default());
}
bank0.freeze();
let arc_bank0 = Arc::new(bank0);
let bank_forks = Arc::new(RwLock::new(BankForks::new_from_banks(&[arc_bank0], 0)));
let exit = Arc::new(AtomicBool::new(false));
let block_commitment_cache = Arc::new(RwLock::new(BlockCommitmentCache::default()));
let subscriptions = Arc::new(RpcSubscriptions::new(
&exit,
bank_forks.clone(),
block_commitment_cache.clone(),
OptimisticallyConfirmedBank::locked_from_bank_forks_root(&bank_forks),
));
let (lockouts_sender, _) =
AggregateCommitmentService::new(&exit, block_commitment_cache.clone(), subscriptions);
assert!(block_commitment_cache
.read()
.unwrap()
.get_block_commitment(0)
.is_none());
assert!(block_commitment_cache
.read()
.unwrap()
.get_block_commitment(1)
.is_none());
for i in 1..=3 {
let prev_bank = bank_forks.read().unwrap().get(i - 1).unwrap().clone();
let bank = Bank::new_from_parent(&prev_bank, &Pubkey::default(), prev_bank.slot() + 1);
let _res = bank.transfer(
10,
&genesis_config_info.mint_keypair,
&solana_sdk::pubkey::new_rand(),
);
for _ in 0..genesis_config.ticks_per_slot {
bank.register_tick(&Hash::default());
}
bank_forks.write().unwrap().insert(bank);
let arc_bank = bank_forks.read().unwrap().get(i).unwrap().clone();
leader_vote(i - 1, &arc_bank, &leader_voting_pubkey);
ReplayStage::update_commitment_cache(
arc_bank.clone(),
0,
leader_lamports,
&lockouts_sender,
);
arc_bank.freeze();
}
thread::sleep(Duration::from_millis(200));
let mut expected0 = BlockCommitment::default();
expected0.increase_confirmation_stake(3, leader_lamports);
assert_eq!(
block_commitment_cache
.read()
.unwrap()
.get_block_commitment(0)
.unwrap(),
&expected0,
);
let mut expected1 = BlockCommitment::default();
expected1.increase_confirmation_stake(2, leader_lamports);
assert_eq!(
block_commitment_cache
.read()
.unwrap()
.get_block_commitment(1)
.unwrap(),
&expected1
);
let mut expected2 = BlockCommitment::default();
expected2.increase_confirmation_stake(1, leader_lamports);
assert_eq!(
block_commitment_cache
.read()
.unwrap()
.get_block_commitment(2)
.unwrap(),
&expected2
);
}
pub fn create_test_transactions_and_populate_blockstore(
keypairs: Vec<&Keypair>,
previous_slot: Slot,
bank: Arc<Bank>,
blockstore: Arc<Blockstore>,
) -> Vec<Signature> {
let mint_keypair = keypairs[0];
let keypair1 = keypairs[1];
let keypair2 = keypairs[2];
let keypair3 = keypairs[3];
let slot = bank.slot();
let blockhash = bank.confirmed_last_blockhash().0;
let success_tx =
system_transaction::transfer(&mint_keypair, &keypair1.pubkey(), 2, blockhash);
let success_signature = success_tx.signatures[0];
let entry_1 = next_entry(&blockhash, 1, vec![success_tx]);
let ix_error_tx =
system_transaction::transfer(&keypair2, &keypair3.pubkey(), 10, blockhash);
let ix_error_signature = ix_error_tx.signatures[0];
let entry_2 = next_entry(&entry_1.hash, 1, vec![ix_error_tx]);
let fail_tx =
system_transaction::transfer(&mint_keypair, &keypair2.pubkey(), 2, Hash::default());
let entry_3 = next_entry(&entry_2.hash, 1, vec![fail_tx]);
let entries = vec![entry_1, entry_2, entry_3];
let shreds = entries_to_test_shreds(entries.clone(), slot, previous_slot, true, 0);
blockstore.insert_shreds(shreds, None, false).unwrap();
blockstore.set_roots(&[slot]).unwrap();
let (transaction_status_sender, transaction_status_receiver) = unbounded();
let (replay_vote_sender, _replay_vote_receiver) = unbounded();
let transaction_status_service = TransactionStatusService::new(
transaction_status_receiver,
blockstore,
&Arc::new(AtomicBool::new(false)),
);
let _result = blockstore_processor::process_entries(
&bank,
&entries,
true,
Some(TransactionStatusSender {
sender: transaction_status_sender,
enable_cpi_and_log_storage: false,
}),
Some(&replay_vote_sender),
);
transaction_status_service.join().unwrap();
vec![success_signature, ix_error_signature]
}
#[test]
fn test_write_persist_transaction_status() {
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config(1000);
let (ledger_path, _) = create_new_tmp_ledger!(&genesis_config);
{
let blockstore = Blockstore::open(&ledger_path)
.expect("Expected to successfully open database ledger");
let blockstore = Arc::new(blockstore);
let keypair1 = Keypair::new();
let keypair2 = Keypair::new();
let keypair3 = Keypair::new();
let bank0 = Arc::new(Bank::new(&genesis_config));
bank0
.transfer(4, &mint_keypair, &keypair2.pubkey())
.unwrap();
let bank1 = Arc::new(Bank::new_from_parent(&bank0, &Pubkey::default(), 1));
let slot = bank1.slot();
let signatures = create_test_transactions_and_populate_blockstore(
vec![&mint_keypair, &keypair1, &keypair2, &keypair3],
bank0.slot(),
bank1,
blockstore.clone(),
);
let confirmed_block = blockstore.get_confirmed_block(slot, false).unwrap();
assert_eq!(confirmed_block.transactions.len(), 3);
for TransactionWithStatusMeta { transaction, meta } in
confirmed_block.transactions.into_iter()
{
if transaction.signatures[0] == signatures[0] {
let meta = meta.unwrap();
assert_eq!(meta.status, Ok(()));
} else if transaction.signatures[0] == signatures[1] {
let meta = meta.unwrap();
assert_eq!(
meta.status,
Err(TransactionError::InstructionError(
0,
InstructionError::Custom(1)
))
);
} else {
assert_eq!(meta, None);
}
}
}
Blockstore::destroy(&ledger_path).unwrap();
}
#[test]
fn test_compute_bank_stats_confirmed() {
let vote_keypairs = ValidatorVoteKeypairs::new_rand();
let node_pubkey = vote_keypairs.node_keypair.pubkey();
let keypairs: HashMap<_, _> = vec![(node_pubkey, vote_keypairs)].into_iter().collect();
let (bank_forks, mut progress, mut heaviest_subtree_fork_choice) =
initialize_state(&keypairs, 10_000);
let bank0 = bank_forks.get(0).unwrap().clone();
let my_keypairs = keypairs.get(&node_pubkey).unwrap();
let vote_tx = vote_transaction::new_vote_transaction(
vec![0],
bank0.hash(),
bank0.last_blockhash(),
&my_keypairs.node_keypair,
&my_keypairs.vote_keypair,
&my_keypairs.vote_keypair,
None,
);
let bank_forks = RwLock::new(bank_forks);
let bank1 = Bank::new_from_parent(&bank0, &node_pubkey, 1);
bank1.process_transaction(&vote_tx).unwrap();
bank1.freeze();
let ancestors = bank_forks.read().unwrap().ancestors();
let mut frozen_banks: Vec<_> = bank_forks
.read()
.unwrap()
.frozen_banks()
.values()
.cloned()
.collect();
let tower = Tower::new_for_tests(0, 0.67);
let newly_computed = ReplayStage::compute_bank_stats(
&node_pubkey,
&ancestors,
&mut frozen_banks,
&tower,
&mut progress,
&VoteTracker::default(),
&ClusterSlots::default(),
&bank_forks,
&mut heaviest_subtree_fork_choice,
);
assert_eq!(newly_computed, vec![0]);
{
let fork_progress = progress.get(&0).unwrap();
let confirmed_forks = ReplayStage::confirm_forks(
&tower,
&fork_progress.fork_stats.voted_stakes,
fork_progress.fork_stats.total_stake,
&progress,
&bank_forks,
);
assert!(confirmed_forks.is_empty())
}
bank_forks.write().unwrap().insert(bank1);
progress.insert(
1,
ForkProgress::new(bank0.last_blockhash(), None, None, 0, 0),
);
let ancestors = bank_forks.read().unwrap().ancestors();
let mut frozen_banks: Vec<_> = bank_forks
.read()
.unwrap()
.frozen_banks()
.values()
.cloned()
.collect();
let newly_computed = ReplayStage::compute_bank_stats(
&node_pubkey,
&ancestors,
&mut frozen_banks,
&tower,
&mut progress,
&VoteTracker::default(),
&ClusterSlots::default(),
&bank_forks,
&mut heaviest_subtree_fork_choice,
);
assert_eq!(newly_computed, vec![1]);
{
let fork_progress = progress.get(&1).unwrap();
let confirmed_forks = ReplayStage::confirm_forks(
&tower,
&fork_progress.fork_stats.voted_stakes,
fork_progress.fork_stats.total_stake,
&progress,
&bank_forks,
);
assert_eq!(confirmed_forks, vec![0]);
}
let ancestors = bank_forks.read().unwrap().ancestors();
let mut frozen_banks: Vec<_> = bank_forks
.read()
.unwrap()
.frozen_banks()
.values()
.cloned()
.collect();
let newly_computed = ReplayStage::compute_bank_stats(
&node_pubkey,
&ancestors,
&mut frozen_banks,
&tower,
&mut progress,
&VoteTracker::default(),
&ClusterSlots::default(),
&bank_forks,
&mut heaviest_subtree_fork_choice,
);
assert!(newly_computed.is_empty());
}
#[test]
fn test_same_weight_select_lower_slot() {
let mut vote_simulator = VoteSimulator::new(1);
let node_pubkey = vote_simulator.node_pubkeys[0];
let tower = Tower::new_with_key(&node_pubkey);
let forks = tr(0) / (tr(1)) / (tr(2));
vote_simulator.fill_bank_forks(forks.clone(), &HashMap::new());
let mut heaviest_subtree_fork_choice = HeaviestSubtreeForkChoice::new_from_tree(forks);
let mut frozen_banks: Vec<_> = vote_simulator
.bank_forks
.read()
.unwrap()
.frozen_banks()
.values()
.cloned()
.collect();
let ancestors = vote_simulator.bank_forks.read().unwrap().ancestors();
ReplayStage::compute_bank_stats(
&node_pubkey,
&ancestors,
&mut frozen_banks,
&tower,
&mut vote_simulator.progress,
&VoteTracker::default(),
&ClusterSlots::default(),
&vote_simulator.bank_forks,
&mut heaviest_subtree_fork_choice,
);
assert_eq!(
heaviest_subtree_fork_choice.stake_voted_subtree(1).unwrap(),
heaviest_subtree_fork_choice.stake_voted_subtree(2).unwrap()
);
let (heaviest_bank, _) = heaviest_subtree_fork_choice.select_forks(
&frozen_banks,
&tower,
&vote_simulator.progress,
&ancestors,
&vote_simulator.bank_forks,
);
assert_eq!(heaviest_bank.slot(), 1);
}
#[test]
fn test_child_bank_heavier() {
let mut vote_simulator = VoteSimulator::new(1);
let node_pubkey = vote_simulator.node_pubkeys[0];
let mut tower = Tower::new_with_key(&node_pubkey);
let forks = tr(0) / (tr(1) / (tr(2) / (tr(3))));
let mut cluster_votes = HashMap::new();
let votes = vec![0, 2];
cluster_votes.insert(node_pubkey, votes.clone());
vote_simulator.fill_bank_forks(forks, &cluster_votes);
for vote in votes {
assert!(vote_simulator
.simulate_vote(vote, &node_pubkey, &mut tower,)
.is_empty());
}
let mut frozen_banks: Vec<_> = vote_simulator
.bank_forks
.read()
.unwrap()
.frozen_banks()
.values()
.cloned()
.collect();
ReplayStage::compute_bank_stats(
&node_pubkey,
&vote_simulator.bank_forks.read().unwrap().ancestors(),
&mut frozen_banks,
&tower,
&mut vote_simulator.progress,
&VoteTracker::default(),
&ClusterSlots::default(),
&vote_simulator.bank_forks,
&mut vote_simulator.heaviest_subtree_fork_choice,
);
frozen_banks.sort_by_key(|bank| bank.slot());
for pair in frozen_banks.windows(2) {
let first = vote_simulator
.progress
.get_fork_stats(pair[0].slot())
.unwrap()
.fork_weight;
let second = vote_simulator
.progress
.get_fork_stats(pair[1].slot())
.unwrap()
.fork_weight;
assert!(second >= first);
}
for bank in frozen_banks {
assert_eq!(
vote_simulator
.heaviest_subtree_fork_choice
.best_slot(bank.slot())
.unwrap(),
3
);
}
}
#[test]
fn test_should_retransmit() {
let poh_slot = 4;
let mut last_retransmit_slot = 4;
assert!(!ReplayStage::should_retransmit(
poh_slot,
&mut last_retransmit_slot
));
assert_eq!(last_retransmit_slot, 4);
for poh_slot in 4..4 + NUM_CONSECUTIVE_LEADER_SLOTS {
assert!(!ReplayStage::should_retransmit(
poh_slot,
&mut last_retransmit_slot
));
assert_eq!(last_retransmit_slot, 4);
}
let poh_slot = 4 + NUM_CONSECUTIVE_LEADER_SLOTS;
last_retransmit_slot = 4;
assert!(ReplayStage::should_retransmit(
poh_slot,
&mut last_retransmit_slot
));
assert_eq!(last_retransmit_slot, poh_slot);
let poh_slot = 3;
last_retransmit_slot = 4;
assert!(ReplayStage::should_retransmit(
poh_slot,
&mut last_retransmit_slot
));
assert_eq!(last_retransmit_slot, poh_slot);
}
#[test]
fn test_update_slot_propagated_threshold_from_votes() {
let keypairs: HashMap<_, _> = iter::repeat_with(|| {
let vote_keypairs = ValidatorVoteKeypairs::new_rand();
(vote_keypairs.node_keypair.pubkey(), vote_keypairs)
})
.take(10)
.collect();
let new_vote_pubkeys: Vec<_> = keypairs
.values()
.map(|keys| keys.vote_keypair.pubkey())
.collect();
let new_node_pubkeys: Vec<_> = keypairs
.values()
.map(|keys| keys.node_keypair.pubkey())
.collect();
run_test_update_slot_propagated_threshold_from_votes(&keypairs, &new_vote_pubkeys, &[], 4);
run_test_update_slot_propagated_threshold_from_votes(&keypairs, &[], &new_node_pubkeys, 4);
run_test_update_slot_propagated_threshold_from_votes(
&keypairs,
&new_vote_pubkeys,
&new_node_pubkeys,
4,
);
run_test_update_slot_propagated_threshold_from_votes(
&keypairs,
&new_vote_pubkeys[0..5],
&new_node_pubkeys[5..],
2,
);
}
fn run_test_update_slot_propagated_threshold_from_votes(
all_keypairs: &HashMap<Pubkey, ValidatorVoteKeypairs>,
new_vote_pubkeys: &[Pubkey],
new_node_pubkeys: &[Pubkey],
success_index: usize,
) {
let stake = 10_000;
let (bank_forks, _, _) = initialize_state(&all_keypairs, stake);
let root_bank = bank_forks.root_bank();
let mut propagated_stats = PropagatedStats {
total_epoch_stake: stake * all_keypairs.len() as u64,
..PropagatedStats::default()
};
let child_reached_threshold = false;
for i in 0..std::cmp::max(new_vote_pubkeys.len(), new_node_pubkeys.len()) {
propagated_stats.is_propagated = false;
let len = std::cmp::min(i, new_vote_pubkeys.len());
let mut voted_pubkeys = new_vote_pubkeys[..len].iter().copied().collect();
let len = std::cmp::min(i, new_node_pubkeys.len());
let mut node_pubkeys = new_node_pubkeys[..len].iter().copied().collect();
let did_newly_reach_threshold =
ReplayStage::update_slot_propagated_threshold_from_votes(
&mut voted_pubkeys,
&mut node_pubkeys,
&root_bank,
&mut propagated_stats,
child_reached_threshold,
);
let remaining_vote_pubkeys = {
if i == 0 || i >= new_vote_pubkeys.len() {
vec![]
} else {
vec![new_vote_pubkeys[i - 1]]
}
};
let remaining_node_pubkeys = {
if i == 0 || i >= new_node_pubkeys.len() {
vec![]
} else {
vec![new_node_pubkeys[i - 1]]
}
};
assert_eq!(voted_pubkeys, remaining_vote_pubkeys);
assert_eq!(node_pubkeys, remaining_node_pubkeys);
if i >= success_index {
assert!(propagated_stats.is_propagated);
assert!(did_newly_reach_threshold);
} else {
assert!(!propagated_stats.is_propagated);
assert!(!did_newly_reach_threshold);
}
}
}
#[test]
fn test_update_slot_propagated_threshold_from_votes2() {
let mut empty: Vec<Pubkey> = vec![];
let genesis_config = create_genesis_config(100_000_000).genesis_config;
let root_bank = Bank::new(&genesis_config);
let stake = 10_000;
let mut propagated_stats = PropagatedStats {
total_epoch_stake: stake * 10,
..PropagatedStats::default()
};
propagated_stats.total_epoch_stake = stake * 10;
let child_reached_threshold = true;
let mut newly_voted_pubkeys: Vec<Pubkey> = vec![];
assert!(ReplayStage::update_slot_propagated_threshold_from_votes(
&mut newly_voted_pubkeys,
&mut empty,
&root_bank,
&mut propagated_stats,
child_reached_threshold,
));
propagated_stats = PropagatedStats {
total_epoch_stake: stake * 10,
..PropagatedStats::default()
};
propagated_stats.is_propagated = true;
newly_voted_pubkeys = vec![];
assert!(!ReplayStage::update_slot_propagated_threshold_from_votes(
&mut newly_voted_pubkeys,
&mut empty,
&root_bank,
&mut propagated_stats,
child_reached_threshold,
));
let child_reached_threshold = false;
assert!(!ReplayStage::update_slot_propagated_threshold_from_votes(
&mut newly_voted_pubkeys,
&mut empty,
&root_bank,
&mut propagated_stats,
child_reached_threshold,
));
}
#[test]
fn test_update_propagation_status() {
let vote_keypairs = ValidatorVoteKeypairs::new_rand();
let node_pubkey = vote_keypairs.node_keypair.pubkey();
let vote_pubkey = vote_keypairs.vote_keypair.pubkey();
let keypairs: HashMap<_, _> = vec![(node_pubkey, vote_keypairs)].into_iter().collect();
let stake = 10_000;
let (mut bank_forks, mut progress_map, _) = initialize_state(&keypairs, stake);
let bank0 = bank_forks.get(0).unwrap().clone();
bank_forks.insert(Bank::new_from_parent(&bank0, &Pubkey::default(), 9));
let bank9 = bank_forks.get(9).unwrap().clone();
bank_forks.insert(Bank::new_from_parent(&bank9, &Pubkey::default(), 10));
bank_forks.set_root(9, &AbsRequestSender::default(), None);
let total_epoch_stake = bank0.total_epoch_stake();
progress_map.insert(
10,
ForkProgress::new(
Hash::default(),
Some(9),
Some(ValidatorStakeInfo {
total_epoch_stake,
..ValidatorStakeInfo::default()
}),
0,
0,
),
);
progress_map.insert(
9,
ForkProgress::new(
Hash::default(),
Some(8),
Some(ValidatorStakeInfo {
total_epoch_stake,
..ValidatorStakeInfo::default()
}),
0,
0,
),
);
assert!(!progress_map.is_propagated(10));
let vote_tracker = VoteTracker::new(&bank_forks.root_bank());
vote_tracker.insert_vote(10, vote_pubkey);
ReplayStage::update_propagation_status(
&mut progress_map,
10,
&RwLock::new(bank_forks),
&vote_tracker,
&ClusterSlots::default(),
);
let propagated_stats = &progress_map.get(&10).unwrap().propagated_stats;
assert!(propagated_stats.slot_vote_tracker.is_some());
assert!(propagated_stats
.slot_vote_tracker
.as_ref()
.unwrap()
.write()
.unwrap()
.get_updates()
.is_none());
assert!(propagated_stats
.propagated_validators
.contains(&vote_pubkey));
assert_eq!(propagated_stats.propagated_validators_stake, stake);
}
#[test]
fn test_chain_update_propagation_status() {
let keypairs: HashMap<_, _> = iter::repeat_with(|| {
let vote_keypairs = ValidatorVoteKeypairs::new_rand();
(vote_keypairs.node_keypair.pubkey(), vote_keypairs)
})
.take(10)
.collect();
let vote_pubkeys: Vec<_> = keypairs
.values()
.map(|keys| keys.vote_keypair.pubkey())
.collect();
let stake_per_validator = 10_000;
let (mut bank_forks, mut progress_map, _) =
initialize_state(&keypairs, stake_per_validator);
progress_map
.get_propagated_stats_mut(0)
.unwrap()
.is_leader_slot = true;
bank_forks.set_root(0, &AbsRequestSender::default(), None);
let total_epoch_stake = bank_forks.root_bank().total_epoch_stake();
for i in 1..=10 {
let parent_bank = bank_forks.get(i - 1).unwrap().clone();
let prev_leader_slot = ((i - 1) / 2) * 2;
bank_forks.insert(Bank::new_from_parent(&parent_bank, &Pubkey::default(), i));
progress_map.insert(
i,
ForkProgress::new(
Hash::default(),
Some(prev_leader_slot),
{
if i % 2 == 0 {
Some(ValidatorStakeInfo {
total_epoch_stake,
..ValidatorStakeInfo::default()
})
} else {
None
}
},
0,
0,
),
);
}
let vote_tracker = VoteTracker::new(&bank_forks.root_bank());
for vote_pubkey in &vote_pubkeys {
vote_tracker.insert_vote(10, *vote_pubkey);
}
ReplayStage::update_propagation_status(
&mut progress_map,
10,
&RwLock::new(bank_forks),
&vote_tracker,
&ClusterSlots::default(),
);
for i in 1..=10 {
let propagated_stats = &progress_map.get(&i).unwrap().propagated_stats;
if i % 2 == 0 {
assert!(propagated_stats.is_propagated);
} else {
assert!(!propagated_stats.is_propagated);
}
}
}
#[test]
fn test_chain_update_propagation_status2() {
let num_validators = 6;
let keypairs: HashMap<_, _> = iter::repeat_with(|| {
let vote_keypairs = ValidatorVoteKeypairs::new_rand();
(vote_keypairs.node_keypair.pubkey(), vote_keypairs)
})
.take(num_validators)
.collect();
let vote_pubkeys: Vec<_> = keypairs
.values()
.map(|keys| keys.vote_keypair.pubkey())
.collect();
let stake_per_validator = 10_000;
let (mut bank_forks, mut progress_map, _) =
initialize_state(&keypairs, stake_per_validator);
progress_map
.get_propagated_stats_mut(0)
.unwrap()
.is_leader_slot = true;
bank_forks.set_root(0, &AbsRequestSender::default(), None);
let total_epoch_stake = num_validators as u64 * stake_per_validator;
for i in 1..=10 {
let parent_bank = bank_forks.get(i - 1).unwrap().clone();
let prev_leader_slot = i - 1;
bank_forks.insert(Bank::new_from_parent(&parent_bank, &Pubkey::default(), i));
let mut fork_progress = ForkProgress::new(
Hash::default(),
Some(prev_leader_slot),
Some(ValidatorStakeInfo {
total_epoch_stake,
..ValidatorStakeInfo::default()
}),
0,
0,
);
let end_range = {
if i < 5 {
2
} else {
1
}
};
fork_progress.propagated_stats.propagated_validators =
vote_pubkeys[0..end_range].iter().copied().collect();
fork_progress.propagated_stats.propagated_validators_stake =
end_range as u64 * stake_per_validator;
progress_map.insert(i, fork_progress);
}
let vote_tracker = VoteTracker::new(&bank_forks.root_bank());
vote_tracker.insert_vote(10, vote_pubkeys[2]);
ReplayStage::update_propagation_status(
&mut progress_map,
10,
&RwLock::new(bank_forks),
&vote_tracker,
&ClusterSlots::default(),
);
for i in 1..=10 {
let propagated_stats = &progress_map.get(&i).unwrap().propagated_stats;
if i < 5 {
assert!(propagated_stats.is_propagated);
} else {
assert!(!propagated_stats.is_propagated);
}
}
}
#[test]
fn test_check_propagation_for_start_leader() {
let mut progress_map = ProgressMap::default();
let poh_slot = 5;
let parent_slot = poh_slot - NUM_CONSECUTIVE_LEADER_SLOTS;
progress_map.insert(
parent_slot,
ForkProgress::new(Hash::default(), None, None, 0, 0),
);
assert!(ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
progress_map.insert(
parent_slot,
ForkProgress::new(
Hash::default(),
None,
Some(ValidatorStakeInfo::default()),
0,
0,
),
);
assert!(!ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
progress_map
.get_mut(&parent_slot)
.unwrap()
.propagated_stats
.is_propagated = true;
assert!(ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
let previous_leader_slot = parent_slot - 1;
progress_map.insert(
parent_slot,
ForkProgress::new(Hash::default(), Some(previous_leader_slot), None, 0, 0),
);
progress_map.insert(
previous_leader_slot,
ForkProgress::new(
Hash::default(),
None,
Some(ValidatorStakeInfo::default()),
0,
0,
),
);
assert!(!ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
progress_map
.get_mut(&previous_leader_slot)
.unwrap()
.propagated_stats
.is_propagated = true;
assert!(ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
let bank0 = Bank::new(&genesis_config::create_genesis_config(10000).0);
let parent_slot_bank =
Bank::new_from_parent(&Arc::new(bank0), &Pubkey::default(), parent_slot);
let mut bank_forks = BankForks::new(parent_slot_bank);
let bank5 =
Bank::new_from_parent(bank_forks.get(parent_slot).unwrap(), &Pubkey::default(), 5);
bank_forks.insert(bank5);
progress_map.handle_new_root(&bank_forks);
assert!(ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
}
#[test]
fn test_check_propagation_skip_propagation_check() {
let mut progress_map = ProgressMap::default();
let poh_slot = 4;
let mut parent_slot = poh_slot - 1;
progress_map.insert(
3,
ForkProgress::new(
Hash::default(),
None,
Some(ValidatorStakeInfo::default()),
0,
0,
),
);
assert!(ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
progress_map
.get_mut(&3)
.unwrap()
.propagated_stats
.is_propagated = true;
assert!(ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
parent_slot = poh_slot - NUM_CONSECUTIVE_LEADER_SLOTS + 1;
progress_map.insert(
parent_slot,
ForkProgress::new(
Hash::default(),
None,
Some(ValidatorStakeInfo::default()),
0,
0,
),
);
assert!(ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
parent_slot = poh_slot - NUM_CONSECUTIVE_LEADER_SLOTS;
progress_map.insert(
parent_slot,
ForkProgress::new(
Hash::default(),
None,
Some(ValidatorStakeInfo::default()),
0,
0,
),
);
assert!(!ReplayStage::check_propagation_for_start_leader(
poh_slot,
parent_slot,
&progress_map,
));
}
#[test]
fn test_purge_unconfirmed_duplicate_slot() {
let (bank_forks, mut progress) = setup_forks();
let mut descendants = bank_forks.read().unwrap().descendants().clone();
let mut ancestors = bank_forks.read().unwrap().ancestors();
ReplayStage::purge_unconfirmed_duplicate_slot(
5,
&mut ancestors,
&mut descendants,
&mut progress,
&bank_forks,
);
for i in 5..=6 {
assert!(bank_forks.read().unwrap().get(i).is_none());
assert!(progress.get(&i).is_none());
}
for i in 0..=4 {
assert!(bank_forks.read().unwrap().get(i).is_some());
assert!(progress.get(&i).is_some());
}
let mut descendants = bank_forks.read().unwrap().descendants().clone();
let mut ancestors = bank_forks.read().unwrap().ancestors();
ReplayStage::purge_unconfirmed_duplicate_slot(
4,
&mut ancestors,
&mut descendants,
&mut progress,
&bank_forks,
);
for i in 4..=6 {
assert!(bank_forks.read().unwrap().get(i).is_none());
assert!(progress.get(&i).is_none());
}
for i in 0..=3 {
assert!(bank_forks.read().unwrap().get(i).is_some());
assert!(progress.get(&i).is_some());
}
let mut descendants = bank_forks.read().unwrap().descendants().clone();
let mut ancestors = bank_forks.read().unwrap().ancestors();
ReplayStage::purge_unconfirmed_duplicate_slot(
1,
&mut ancestors,
&mut descendants,
&mut progress,
&bank_forks,
);
for i in 1..=6 {
assert!(bank_forks.read().unwrap().get(i).is_none());
assert!(progress.get(&i).is_none());
}
assert!(bank_forks.read().unwrap().get(0).is_some());
assert!(progress.get(&0).is_some());
}
#[test]
fn test_purge_ancestors_descendants() {
let (bank_forks, _) = setup_forks();
let mut descendants = bank_forks.read().unwrap().descendants().clone();
let mut ancestors = bank_forks.read().unwrap().ancestors();
let slot_2_descendants = descendants.get(&2).unwrap().clone();
ReplayStage::purge_ancestors_descendants(
2,
&slot_2_descendants,
&mut ancestors,
&mut descendants,
);
for d in slot_2_descendants {
bank_forks.write().unwrap().remove(d);
}
bank_forks.write().unwrap().remove(2);
assert!(check_map_eq(
&ancestors,
&bank_forks.read().unwrap().ancestors()
));
assert!(check_map_eq(
&descendants,
&bank_forks.read().unwrap().descendants()
));
bank_forks
.write()
.unwrap()
.set_root(3, &AbsRequestSender::default(), None);
let mut descendants = bank_forks.read().unwrap().descendants().clone();
let mut ancestors = bank_forks.read().unwrap().ancestors();
let slot_3_descendants = descendants.get(&3).unwrap().clone();
ReplayStage::purge_ancestors_descendants(
3,
&slot_3_descendants,
&mut ancestors,
&mut descendants,
);
assert!(ancestors.is_empty());
for k in descendants.keys() {
assert!(*k < 3);
}
}
#[test]
fn test_leader_snapshot_restart_propagation() {
let ReplayBlockstoreComponents {
validator_voting_keys,
mut progress,
bank_forks,
leader_schedule_cache,
..
} = replay_blockstore_components();
let root_bank = bank_forks.read().unwrap().root_bank();
let my_pubkey = leader_schedule_cache
.slot_leader_at(root_bank.slot(), Some(&root_bank))
.unwrap();
assert!(
progress
.get_propagated_stats(root_bank.slot())
.unwrap()
.is_leader_slot
);
let ancestors = bank_forks.read().unwrap().ancestors();
root_bank.freeze();
let mut frozen_banks: Vec<_> = bank_forks
.read()
.unwrap()
.frozen_banks()
.values()
.cloned()
.collect();
let vote_tracker = VoteTracker::default();
for vote_key in validator_voting_keys.values() {
vote_tracker.insert_vote(root_bank.slot(), *vote_key);
}
assert!(!progress.is_propagated(root_bank.slot()));
let tower = Tower::new_for_tests(0, 0.67);
ReplayStage::compute_bank_stats(
&my_pubkey,
&ancestors,
&mut frozen_banks,
&tower,
&mut progress,
&vote_tracker,
&ClusterSlots::default(),
&bank_forks,
&mut HeaviestSubtreeForkChoice::new_from_bank_forks(&bank_forks.read().unwrap()),
);
assert!(progress.is_propagated(root_bank.slot()));
}
fn setup_forks() -> (RwLock<BankForks>, ProgressMap) {
let forks = tr(0) / (tr(1) / (tr(2) / (tr(4))) / (tr(3) / (tr(5) / (tr(6)))));
let mut vote_simulator = VoteSimulator::new(1);
vote_simulator.fill_bank_forks(forks, &HashMap::new());
(vote_simulator.bank_forks, vote_simulator.progress)
}
fn check_map_eq<K: Eq + std::hash::Hash + std::fmt::Debug, T: PartialEq + std::fmt::Debug>(
map1: &HashMap<K, T>,
map2: &HashMap<K, T>,
) -> bool {
map1.len() == map2.len() && map1.iter().all(|(k, v)| map2.get(k).unwrap() == v)
}
}