1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use core::f32;
use core::f32::consts as f;
use float;
use ieee754::Ieee754;

#[derive(Clone, Copy)]
enum Base {
    E,
    Two,
}
impl Base {
    #[inline(always)]
    fn log2(self) -> f32 {
        match self {
            Base::E => f::LOG2_E,
            Base::Two => 1.0,
        }
    }

    #[inline(always)]
    fn upper_limit(self) -> f32 {
        128.0 / self.log2()
    }

    #[inline(always)]
    fn lower_limit(self) -> f32 {
        -127.0 / self.log2()
    }
}

#[inline(always)]
fn exp_raw_impl(x: f32, base: Base) -> f32 {
    const A: f32 = (1 << float::SIGNIF) as f32;
    const MASK: i32 = 0xff800000u32 as i32;
    const EXP2_23: f32 = 1.1920929e-7;
    const C0: f32 = 0.3371894346 * EXP2_23 * EXP2_23;
    const C1: f32 = 0.657636276 * EXP2_23;
    const C2: f32 = 1.00172476;

    let a = A * base.log2();
    let mul = (a * x) as i32;
    let floor = mul & MASK;
    let frac = (mul - floor) as f32;

    let approx = (C0 * frac + C1) * frac + C2;
    f32::from_bits(approx.bits().wrapping_add(floor as u32))
}

#[inline(always)]
fn exp_impl(x: f32, base: Base) -> f32 {
    if x <= base.lower_limit() {
        0.0
    } else if x < base.upper_limit() {
        exp_raw_impl(x, base)
    } else {
        // too big, or NaN, so lets overflow to infinity with some
        // arithmetic to propagate the NaN.
        x + f32::INFINITY
    }
}

/// Compute a fast approximation to 2<sup><code>x</code></sup> for
/// -151 &le; `x` &le; 151.
///
/// This will return unspecified nonsense if `x` does not satisfy
/// those requirements. Use `exp2` if correct handling is required (at
/// the expense of some speed).
///
/// The maximum relative error for inputs for which the result is
/// normal (`x` &ge; -128) is less than 0.011. For `x` < -128, the
/// relative error in the (subnormal) result can be as large as 1.
#[inline]
pub fn exp2_raw(x: f32) -> f32 {
    exp_raw_impl(x, Base::Two)
}

/// Compute a fast approximation to 2<sup><code>x</code></sup>.
///
/// The maximum relative error for inputs for which the result is
/// normal (`x` &ge; -128) is less than 0.011. For `x` < -128, the
/// relative error in the (subnormal) result can be as large as 1.
///
/// If `x` is NaN, `exp2` returns NaN.
///
/// See also `exp2_raw` which only works on -151 &le; `x` &le; 151,
/// but is % faster.
#[inline]
pub fn exp2(x: f32) -> f32 {
    exp_impl(x, Base::Two)
}

/// Compute a fast approximation to *e*<sup><code>x</code></sup> for
/// -104 &le; `x` &le; 104.
///
/// This will return unspecified nonsense if `x` does not satisfy
/// those requirements. Use `exp` if correct handling is required (at
/// the expense of some speed).
///
/// The maximum relative error for inputs for which the result is
/// normal (`x` &ge; -128 ln(2) &approx; -88.7) is less than
/// 0.011. For `x` < -128 ln(2), the relative error in the (subnormal)
/// result can be as large as 1.
#[inline]
pub fn exp_raw(x: f32) -> f32 {
    exp_raw_impl(x, Base::E)
}

/// Compute a fast approximation to *e*<sup><code>x</code></sup>.
///
/// The maximum relative error for inputs for which the result is
/// normal (`x` &ge; -128 ln 2 &approx; -88.7) is less than
/// 0.011. For `x` < -128 ln 2, the relative error in the (subnormal)
/// result can be as large as 1.
///
/// If `x` is NaN, `exp` returns NaN.
///
/// See also `exp_raw` which only works on -104 &le; `x` &le; 104,
/// but is % faster.
#[inline]
pub fn exp(x: f32) -> f32 {
    exp_impl(x, Base::E)
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::{f32, num};

    const PREC: u32 = 1 << 19;

    #[test]
    fn exp_rel_err_exhaustive() {
        let mut max = 0.0;
        for i in 0..PREC + 1 {
            for j in -5..6 {
                for &sign in &[-1.0, 1.0] {
                    let x = sign * (1.0 + i as f32 / PREC as f32) * 2f32.powi(j * 2);
                    let e = exp(x);
                    let t = x.exp();
                    let rel = e.rel_error(t).abs();

                    if t.classify() == num::FpCategory::Subnormal {
                        // subnormal should be approximately right
                        assert!(rel <= 1.0,
                                "{:.8}: e = {:.8e}, t = {:.8e}. {:.4}", x, e, t, rel);                  } else {
                        if rel > max { max = rel }
                        // e == t handles the infinity case
                        assert!(rel <= 0.002,
                                "{:.8}: e = {:.8e}, t = {:.8e}. {:.4}", x, e, t, rel);
                    }
                }
            }
        }
        println!("maximum {}", max);
    }

    #[test]
    fn exp2_rel_err_exhaustive() {
        let mut max = 0.0;
        for i in 0..PREC + 1 {
            for j in -5..6 {
                for &sign in &[-1.0, 1.0] {
                    let x = sign * (1.0 + i as f32 / PREC as f32) * 2f32.powi(j * 2);
                    let e = exp2(x);
                    let t = x.exp2();
                    let rel = e.rel_error(t).abs();
                    if t.classify() == num::FpCategory::Subnormal {
                        // subnormal should be approximately right
                        assert!(rel <= 1.0,
                                "{:.8}: e = {:.8e}, t = {:.8e}. {:.4}", x, e, t, rel);                  } else {
                        if rel > max { max = rel }
                        // e == t handles the infinity case
                        assert!(rel <= 0.002,
                                "{:.8}: e = {:.8e}, t = {:.8e}. {:.4}", x, e, t, rel);
                    }
                }
            }
        }
        println!("maximum {}", max);
    }

    #[test]
    fn exp_edge_cases() {
        assert!(exp(f32::NAN).is_nan());
        assert_eq!(exp(f32::NEG_INFINITY), 0.0);
        assert!((exp(0.0) - 1.0).abs() < 0.002);
        assert_eq!(exp(f32::INFINITY), f32::INFINITY);
    }

    #[test]
    fn exp2_edge_cases() {
        assert!(exp2(f32::NAN).is_nan());
        assert_eq!(exp2(f32::NEG_INFINITY), 0.0);
        assert!((exp2(0.0) - 1.0).abs() < 0.002);
        assert_eq!(exp2(f32::INFINITY), f32::INFINITY);
    }
}