1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#![cfg_attr(feature = "cargo-clippy", allow(many_single_char_names))]

use consts::{BLOCK_LEN, K0, K1, K2, K3};
use block_buffer::byteorder::{BE, ByteOrder};
use simd::u32x4;
use digest::generic_array::GenericArray;
use digest::generic_array::typenum::U64;

type Block = GenericArray<u8, U64>;

/// Not an intrinsic, but gets the first element of a vector.
#[inline]
pub fn sha1_first(w0: u32x4) -> u32 {
    w0.0
}

/// Not an intrinsic, but adds a word to the first element of a vector.
#[inline]
pub fn sha1_first_add(e: u32, w0: u32x4) -> u32x4 {
    let u32x4(a, b, c, d) = w0;
    u32x4(e.wrapping_add(a), b, c, d)
}

/// Emulates `llvm.x86.sha1msg1` intrinsic.
fn sha1msg1(a: u32x4, b: u32x4) -> u32x4 {
    let u32x4(_, _, w2, w3) = a;
    let u32x4(w4, w5, _, _) = b;
    a ^ u32x4(w2, w3, w4, w5)
}

/// Emulates `llvm.x86.sha1msg2` intrinsic.
fn sha1msg2(a: u32x4, b: u32x4) -> u32x4 {
    let u32x4(x0, x1, x2, x3) = a;
    let u32x4(_, w13, w14, w15) = b;

    let w16 = (x0 ^ w13).rotate_left(1);
    let w17 = (x1 ^ w14).rotate_left(1);
    let w18 = (x2 ^ w15).rotate_left(1);
    let w19 = (x3 ^ w16).rotate_left(1);

    u32x4(w16, w17, w18, w19)
}

/// Performs 4 rounds of the message schedule update.
/*
pub fn sha1_schedule_x4(v0: u32x4, v1: u32x4, v2: u32x4, v3: u32x4) -> u32x4 {
    sha1msg2(sha1msg1(v0, v1) ^ v2, v3)
}
*/

/// Emulates `llvm.x86.sha1nexte` intrinsic.
#[inline]
fn sha1_first_half(abcd: u32x4, msg: u32x4) -> u32x4 {
    sha1_first_add(sha1_first(abcd).rotate_left(30), msg)
}

/// Emulates `llvm.x86.sha1rnds4` intrinsic.
/// Performs 4 rounds of the message block digest.
fn sha1_digest_round_x4(abcd: u32x4, work: u32x4, i: i8) -> u32x4 {
    const K0V: u32x4 = u32x4(K0, K0, K0, K0);
    const K1V: u32x4 = u32x4(K1, K1, K1, K1);
    const K2V: u32x4 = u32x4(K2, K2, K2, K2);
    const K3V: u32x4 = u32x4(K3, K3, K3, K3);

    match i {
        0 => sha1rnds4c(abcd, work + K0V),
        1 => sha1rnds4p(abcd, work + K1V),
        2 => sha1rnds4m(abcd, work + K2V),
        3 => sha1rnds4p(abcd, work + K3V),
        _ => unreachable!("unknown icosaround index"),
    }
}

/// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic.
fn sha1rnds4c(abcd: u32x4, msg: u32x4) -> u32x4 {
    let u32x4(mut a, mut b, mut c, mut d) = abcd;
    let u32x4(t, u, v, w) = msg;
    let mut e = 0u32;

    macro_rules! bool3ary_202 {
        ($a:expr, $b:expr, $c:expr) => ($c ^ ($a & ($b ^ $c)))
    } // Choose, MD5F, SHA1C

    e = e.wrapping_add(a.rotate_left(5))
        .wrapping_add(bool3ary_202!(b, c, d))
        .wrapping_add(t);
    b = b.rotate_left(30);

    d = d.wrapping_add(e.rotate_left(5))
        .wrapping_add(bool3ary_202!(a, b, c))
        .wrapping_add(u);
    a = a.rotate_left(30);

    c = c.wrapping_add(d.rotate_left(5))
        .wrapping_add(bool3ary_202!(e, a, b))
        .wrapping_add(v);
    e = e.rotate_left(30);

    b = b.wrapping_add(c.rotate_left(5))
        .wrapping_add(bool3ary_202!(d, e, a))
        .wrapping_add(w);
    d = d.rotate_left(30);

    u32x4(b, c, d, e)
}

/// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic.
fn sha1rnds4p(abcd: u32x4, msg: u32x4) -> u32x4 {
    let u32x4(mut a, mut b, mut c, mut d) = abcd;
    let u32x4(t, u, v, w) = msg;
    let mut e = 0u32;

    macro_rules! bool3ary_150 {
        ($a:expr, $b:expr, $c:expr) => ($a ^ $b ^ $c)
    } // Parity, XOR, MD5H, SHA1P

    e = e.wrapping_add(a.rotate_left(5))
        .wrapping_add(bool3ary_150!(b, c, d))
        .wrapping_add(t);
    b = b.rotate_left(30);

    d = d.wrapping_add(e.rotate_left(5))
        .wrapping_add(bool3ary_150!(a, b, c))
        .wrapping_add(u);
    a = a.rotate_left(30);

    c = c.wrapping_add(d.rotate_left(5))
        .wrapping_add(bool3ary_150!(e, a, b))
        .wrapping_add(v);
    e = e.rotate_left(30);

    b = b.wrapping_add(c.rotate_left(5))
        .wrapping_add(bool3ary_150!(d, e, a))
        .wrapping_add(w);
    d = d.rotate_left(30);

    u32x4(b, c, d, e)
}

/// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic.
fn sha1rnds4m(abcd: u32x4, msg: u32x4) -> u32x4 {
    let u32x4(mut a, mut b, mut c, mut d) = abcd;
    let u32x4(t, u, v, w) = msg;
    let mut e = 0u32;

    macro_rules! bool3ary_232 {
        ($a:expr, $b:expr, $c:expr) => (($a & $b) ^ ($a & $c) ^ ($b & $c))
    } // Majority, SHA1M

    e = e.wrapping_add(a.rotate_left(5))
        .wrapping_add(bool3ary_232!(b, c, d))
        .wrapping_add(t);
    b = b.rotate_left(30);

    d = d.wrapping_add(e.rotate_left(5))
        .wrapping_add(bool3ary_232!(a, b, c))
        .wrapping_add(u);
    a = a.rotate_left(30);

    c = c.wrapping_add(d.rotate_left(5))
        .wrapping_add(bool3ary_232!(e, a, b))
        .wrapping_add(v);
    e = e.rotate_left(30);

    b = b.wrapping_add(c.rotate_left(5))
        .wrapping_add(bool3ary_232!(d, e, a))
        .wrapping_add(w);
    d = d.rotate_left(30);

    u32x4(b, c, d, e)
}

/// Process a block with the SHA-1 algorithm.
fn sha1_digest_block_u32(state: &mut [u32; 5], block: &[u32; 16]) {

    macro_rules! schedule {
        ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => (
            sha1msg2(sha1msg1($v0, $v1) ^ $v2, $v3)
        )
    }

    macro_rules! rounds4 {
        ($h0:ident, $h1:ident, $wk:expr, $i:expr) => (
            sha1_digest_round_x4($h0, sha1_first_half($h1, $wk), $i)
        )
    }

    // Rounds 0..20
    // TODO: replace with `u32x4::load`
    let mut h0 = u32x4(state[0], state[1], state[2], state[3]);
    let mut w0 = u32x4(block[0], block[1], block[2], block[3]);
    let mut h1 = sha1_digest_round_x4(h0, sha1_first_add(state[4], w0), 0);
    let mut w1 = u32x4(block[4], block[5], block[6], block[7]);
    h0 = rounds4!(h1, h0, w1, 0);
    let mut w2 = u32x4(block[8], block[9], block[10], block[11]);
    h1 = rounds4!(h0, h1, w2, 0);
    let mut w3 = u32x4(block[12], block[13], block[14], block[15]);
    h0 = rounds4!(h1, h0, w3, 0);
    let mut w4 = schedule!(w0, w1, w2, w3);
    h1 = rounds4!(h0, h1, w4, 0);

    // Rounds 20..40
    w0 = schedule!(w1, w2, w3, w4);
    h0 = rounds4!(h1, h0, w0, 1);
    w1 = schedule!(w2, w3, w4, w0);
    h1 = rounds4!(h0, h1, w1, 1);
    w2 = schedule!(w3, w4, w0, w1);
    h0 = rounds4!(h1, h0, w2, 1);
    w3 = schedule!(w4, w0, w1, w2);
    h1 = rounds4!(h0, h1, w3, 1);
    w4 = schedule!(w0, w1, w2, w3);
    h0 = rounds4!(h1, h0, w4, 1);

    // Rounds 40..60
    w0 = schedule!(w1, w2, w3, w4);
    h1 = rounds4!(h0, h1, w0, 2);
    w1 = schedule!(w2, w3, w4, w0);
    h0 = rounds4!(h1, h0, w1, 2);
    w2 = schedule!(w3, w4, w0, w1);
    h1 = rounds4!(h0, h1, w2, 2);
    w3 = schedule!(w4, w0, w1, w2);
    h0 = rounds4!(h1, h0, w3, 2);
    w4 = schedule!(w0, w1, w2, w3);
    h1 = rounds4!(h0, h1, w4, 2);

    // Rounds 60..80
    w0 = schedule!(w1, w2, w3, w4);
    h0 = rounds4!(h1, h0, w0, 3);
    w1 = schedule!(w2, w3, w4, w0);
    h1 = rounds4!(h0, h1, w1, 3);
    w2 = schedule!(w3, w4, w0, w1);
    h0 = rounds4!(h1, h0, w2, 3);
    w3 = schedule!(w4, w0, w1, w2);
    h1 = rounds4!(h0, h1, w3, 3);
    w4 = schedule!(w0, w1, w2, w3);
    h0 = rounds4!(h1, h0, w4, 3);

    let e = sha1_first(h1).rotate_left(30);
    let u32x4(a, b, c, d) = h0;

    state[0] = state[0].wrapping_add(a);
    state[1] = state[1].wrapping_add(b);
    state[2] = state[2].wrapping_add(c);
    state[3] = state[3].wrapping_add(d);
    state[4] = state[4].wrapping_add(e);
}

/// Process a block with the SHA-1 algorithm. (See more...)
///
/// SHA-1 is a cryptographic hash function, and as such, it operates
/// on an arbitrary number of bytes. This function operates on a fixed
/// number of bytes. If you call this function with anything other than
/// 64 bytes, then it will panic! This function takes two arguments:
///
/// * `state` is reference to an **array** of 5 words.
/// * `block` is reference to a **slice** of 64 bytes.
///
/// If you want the function that performs a message digest on an arbitrary
/// number of bytes, then see also the `Sha1` struct above.
///
/// # Implementation
///
/// First, some background. Both ARM and Intel are releasing documentation
/// that they plan to include instruction set extensions for SHA1 and SHA256
/// sometime in the near future. Second, LLVM won't lower these intrinsics yet,
/// so these functions were written emulate these instructions. Finally,
/// the block function implemented with these emulated intrinsics turned out
/// to be quite fast! What follows is a discussion of this CPU-level view
/// of the SHA-1 algorithm and how it relates to the mathematical definition.
///
/// The SHA instruction set extensions can be divided up into two categories:
///
/// * message work schedule update calculation ("schedule" v., "work" n.)
/// * message block 80-round digest calculation ("digest" v., "block" n.)
///
/// The schedule-related functions can be used to easily perform 4 rounds
/// of the message work schedule update calculation, as shown below:
///
/// ```ignore
/// macro_rules! schedule_x4 {
///     ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => (
///         sha1msg2(sha1msg1($v0, $v1) ^ $v2, $v3)
///     )
/// }
///
/// macro_rules! round_x4 {
///     ($h0:ident, $h1:ident, $wk:expr, $i:expr) => (
///         sha1rnds4($h0, sha1_first_half($h1, $wk), $i)
///     )
/// }
/// ```
///
/// and also shown above is how the digest-related functions can be used to
/// perform 4 rounds of the message block digest calculation.
///
pub fn compress(state: &mut [u32; 5], block: &Block) {
    let mut block_u32 = [0u32; BLOCK_LEN];
    BE::read_u32_into(block, &mut block_u32[..]);
    sha1_digest_block_u32(state, &block_u32);
}