1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//! [Criterion]'s statistics library.
//!
//! [Criterion]: https://github.com/bheisler/criterion.rs
//!
//! **WARNING** This library is criterion's implementation detail and there no plans to stabilize
//! it. In other words, the API may break at any time without notice.

#![deny(missing_docs)]
#![deny(warnings)]
#![cfg_attr(
    feature = "cargo-clippy",
    allow(
        clippy::used_underscore_binding,
        clippy::just_underscores_and_digits,
        clippy::transmute_ptr_to_ptr
    )
)]

extern crate cast;
extern crate num_cpus;
extern crate num_traits;
extern crate rand;
extern crate thread_scoped;

#[cfg(test)]
#[macro_use]
extern crate approx;
#[cfg(test)]
#[macro_use]
extern crate quickcheck;

#[cfg(test)]
mod test;

pub mod bivariate;
pub mod tuple;
pub mod univariate;

mod float;

use std::mem;
use std::ops::Deref;

use float::Float;
use univariate::Sample;

/// The bootstrap distribution of some parameter
pub struct Distribution<A>(Box<[A]>);

impl<A> Distribution<A>
where
    A: Float,
{
    /// Create a distribution from the given values
    pub fn from(values: Box<[A]>) -> Distribution<A> {
        Distribution(values)
    }

    /// Computes the confidence interval of the population parameter using percentiles
    ///
    /// # Panics
    ///
    /// Panics if the `confidence_level` is not in the `(0, 1)` range.
    pub fn confidence_interval(&self, confidence_level: A) -> (A, A)
    where
        usize: cast::From<A, Output = Result<usize, cast::Error>>,
    {
        let _0 = A::cast(0);
        let _1 = A::cast(1);
        let _50 = A::cast(50);

        assert!(confidence_level > _0 && confidence_level < _1);

        let percentiles = self.percentiles();

        // FIXME(privacy) this should use the `at_unchecked()` method
        (
            percentiles.at(_50 * (_1 - confidence_level)),
            percentiles.at(_50 * (_1 + confidence_level)),
        )
    }

    /// Computes the "likelihood" of seeing the value `t` or "more extreme" values in the
    /// distribution.
    pub fn p_value(&self, t: A, tails: &Tails) -> A {
        use std::cmp;

        let n = self.0.len();
        let hits = self.0.iter().filter(|&&x| x < t).count();

        let tails = A::cast(match *tails {
            Tails::One => 1,
            Tails::Two => 2,
        });

        A::cast(cmp::min(hits, n - hits)) / A::cast(n) * tails
    }
}

impl<A> Deref for Distribution<A> {
    type Target = Sample<A>;

    fn deref(&self) -> &Sample<A> {
        let slice: &[_] = &self.0;

        unsafe { mem::transmute(slice) }
    }
}

/// Number of tails for significance testing
pub enum Tails {
    /// One tailed test
    One,
    /// Two tailed test
    Two,
}

fn dot<A>(xs: &[A], ys: &[A]) -> A
where
    A: Float,
{
    xs.iter()
        .zip(ys)
        .fold(A::cast(0), |acc, (&x, &y)| acc + x * y)
}

fn sum<A>(xs: &[A]) -> A
where
    A: Float,
{
    use std::ops::Add;

    xs.iter().cloned().fold(A::cast(0), Add::add)
}