Files
addr2line
adler
ahash
aho_corasick
ansi_term
anyhow
arc_swap
arrayref
arrayvec
ascii
assert_matches
async_stream
async_stream_impl
async_trait
atty
auto_enums
auto_enums_core
auto_enums_derive
backoff
backtrace
base32
base64
bincode
bip39
bitflags
bitvec
blake3
block_buffer
block_padding
borsh
borsh_derive
borsh_derive_internal
borsh_schema_derive_internal
bs58
bstr
bv
byte_slice_cast
byte_unit
bytecount
byteorder
bytes
bzip2
bzip2_sys
cargo_build_bpf
cargo_metadata
cargo_platform
cargo_test_bpf
cast
cc
cfg_if
chrono
chrono_humanize
clap
colored
combine
console
const_fn
constant_time_eq
core_affinity
cpufeatures
crc32fast
criterion_stats
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
crunchy
crypto_mac
csv
csv_core
ctrlc
curve25519_dalek
dashmap
derivative
derive_more
derive_utils
dialoguer
digest
dir_diff
dirs_next
dirs_sys_next
dlopen
dlopen_derive
doc_comment
dtoa
ed25519
ed25519_dalek
either
encoding_rs
enum_iterator
enum_iterator_derive
env_logger
ethabi
ethbloom
ethereum
ethereum_types
evm
evm_bridge
evm_core
evm_gasometer
evm_rpc
evm_runtime
evm_state
evm_utils
failure
failure_derive
fake_simd
fast_math
fd_lock
filetime
fixed_hash
flate2
fnv
foreign_types
foreign_types_shared
form_urlencoded
fs_extra
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
gag
generic_array
gethostname
getrandom
gimli
globset
goauth
goblin
h2
half
hash256_std_hasher
hash32
hash_db
hashbrown
heck
hex
hidapi
histogram
hmac
hmac_drbg
http
http_body
httparse
httpdate
humantime
hyper
hyper_rustls
hyper_tls
idna
ieee754
impl_codec
impl_rlp
impl_serde
indexed
indexmap
indicatif
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
input_buffer
instant
iovec
ipnet
itertools
itoa
jemalloc_ctl
jemalloc_sys
jemallocator
jobserver
jsonrpc_client_transports
jsonrpc_core
jsonrpc_core_client
jsonrpc_derive
jsonrpc_http_server
jsonrpc_pubsub
jsonrpc_server_utils
jsonrpc_ws_server
keccak
keccak_hash
keccak_hasher
kernel32
lazy_static
lazycell
libc
libloading
librocksdb_sys
linked_hash_map
lock_api
log
lru
matches
maybe_uninit
memchr
memmap2
memoffset
mime
mime_guess
miniz_oxide
mio
mio_extras
miow
native_tls
net2
nix
num_cpus
num_derive
num_enum
num_enum_derive
num_integer
num_traits
number_prefix
object
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
ouroboros
ouroboros_macro
parity_scale_codec
parity_scale_codec_derive
parity_ws
parking_lot
parking_lot_core
paste
paste_impl
paw
paw_attributes
paw_raw
pbkdf2
percent_encoding
pest
pickledb
pin_project
pin_project_lite
pin_utils
plain
ppv_lite86
pretty_hex
primitive_types
proc_macro2
proc_macro_crate
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
prost
prost_derive
prost_types
quote
radium
rand
rand_chacha
rand_core
rand_isaac
raptorq
rayon
rayon_core
reed_solomon_erasure
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
retain_mut
ring
ripemd160
rlp
rlp_derive
rocksdb
rpassword
rustc_demangle
rustc_hash
rustc_hex
rustls
rustversion
ryu
same_file
scopeguard
scroll
scroll_derive
sct
secp256k1
secp256k1_sys
semver
semver_parser
serde
serde_bytes
serde_cbor
serde_derive
serde_json
serde_urlencoded
serde_yaml
sha1
sha2
sha3
signal_hook
signal_hook_registry
signature
simpl
simple_logger
slab
smallvec
smpl_jwt
snafu
snafu_derive
socket2
solana_account_decoder
solana_accounts_bench
solana_banking_bench
solana_banks_client
solana_banks_interface
solana_banks_server
solana_bench_exchange
solana_bench_streamer
solana_bench_tps
solana_bench_tps_evm
solana_bpf_loader_program
solana_budget_program
solana_clap_utils
solana_cli
solana_cli_config
solana_cli_output
solana_client
solana_config_program
solana_core
solana_crate_features
solana_csv_to_validator_infos
solana_dos
solana_download_utils
solana_evm_loader_program
solana_exchange_program
solana_failure_program
solana_faucet
solana_frozen_abi
solana_frozen_abi_macro
solana_genesis
solana_ip_address
solana_ip_address_server
solana_ledger
solana_ledger_tool
solana_ledger_udev
solana_local_cluster
solana_log_analyzer
solana_logger
solana_measure
solana_merkle_root_bench
solana_merkle_tree
solana_metrics
solana_net_shaper
solana_net_utils
solana_noop_program
solana_notifier
solana_ownable
solana_perf
solana_poh_bench
solana_program
solana_program_test
solana_ramp_tps
solana_rayon_threadlimit
solana_rbpf
solana_remote_wallet
solana_runtime
solana_sdk
solana_sdk_macro
solana_secp256k1_program
solana_sleep_program
solana_stake_accounts
solana_stake_monitor
solana_stake_o_matic
solana_stake_program
solana_storage_bigtable
solana_storage_proto
solana_store_tool
solana_streamer
solana_sys_tuner
solana_tokens
solana_transaction_status
solana_upload_perf
solana_version
solana_vest_program
solana_vote_program
solana_watchtower
spin
spl_associated_token_account
spl_memo
spl_token
stable_deref_trait
standback
static_assertions
strsim
structopt
structopt_derive
subtle
symlink
syn
synstructure
sysctl
tar
tarpc
tarpc_plugins
tempfile
termcolor
terminal_size
textwrap
thiserror
thiserror_impl
thread_scoped
time
time_macros
time_macros_impl
tiny_keccak
tinyvec
tinyvec_macros
tokio
fs
future
io
loom
macros
net
park
process
runtime
signal
stream
sync
task
time
util
tokio_codec
tokio_executor
tokio_fs
tokio_io
tokio_reactor
tokio_rustls
tokio_serde
tokio_sync
tokio_tcp
tokio_threadpool
tokio_tls
tokio_util
toml
tonic
tower
tower_balance
tower_buffer
tower_discover
tower_layer
tower_limit
tower_load
tower_load_shed
tower_make
tower_ready_cache
tower_retry
tower_service
tower_timeout
tower_util
tracing
tracing_attributes
tracing_core
tracing_futures
trees
triedb
triehash
try_lock
tungstenite
typenum
ucd_trie
uint
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
unix_socket
unreachable
untrusted
url
users
utf8
utf8_width
vec_map
velas
velas_account_program
velas_faucet
velas_genesis
velas_gossip
velas_install
velas_install_init
velas_keygen
velas_test_validator
velas_validator
void
walkdir
want
webpki
webpki_roots
websocket
websocket_base
winapi
ws2_32
xattr
yaml_rust
zeroize
zeroize_derive
zstd
zstd_safe
zstd_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
#![doc(test(attr(deny(warnings))))]
#![warn(missing_docs)]
#![allow(unknown_lints, renamed_and_remove_lints, bare_trait_objects)]

//! Backend of the [signal-hook] crate.
//!
//! The [signal-hook] crate tries to provide an API to the unix signals, which are a global
//! resource. Therefore, it is desirable an application contains just one version of the crate
//! which manages this global resource. But that makes it impossible to make breaking changes in
//! the API.
//!
//! Therefore, this crate provides very minimal and low level API to the signals that is unlikely
//! to have to change, while there may be multiple versions of the [signal-hook] that all use this
//! low-level API to provide different versions of the high level APIs.
//!
//! It is also possible some other crates might want to build a completely different API. This
//! split allows these crates to still reuse the same low-level routines in this crate instead of
//! going to the (much more dangerous) unix calls.
//!
//! # What this crate provides
//!
//! The only thing this crate does is multiplexing the signals. An application or library can add
//! or remove callbacks and have multiple callbacks for the same signal.
//!
//! It handles dispatching the callbacks and managing them in a way that uses only the
//! [async-signal-safe] functions inside the signal handler. Note that the callbacks are still run
//! inside the signal handler, so it is up to the caller to ensure they are also
//! [async-signal-safe].
//!
//! # What this is for
//!
//! This is a building block for other libraries creating reasonable abstractions on top of
//! signals. The [signal-hook] is the generally preferred way if you need to handle signals in your
//! application and provides several safe patterns of doing so.
//!
//! # Rust version compatibility
//!
//! Currently builds on 1.26.0 an newer and this is very unlikely to change. However, tests
//! require dependencies that don't build there, so tests need newer Rust version (they are run on
//! stable).
//!
//! # Portability
//!
//! This crate includes a limited support for Windows, based on `signal`/`raise` in the CRT.
//! There are differences in both API and behavior:
//!
//! - Due to lack of `siginfo_t`, we don't provide `register_sigaction` or `register_unchecked`.
//! - Due to lack of signal blocking, there's a race condition.
//!   After the call to `signal`, there's a moment where we miss a signal.
//!   That means when you register a handler, there may be a signal which invokes
//!   neither the default handler or the handler you register.
//! - Handlers registered by `signal` in Windows are cleared on first signal.
//!   To match behavior in other platforms, we re-register the handler each time the handler is
//!   called, but there's a moment where we miss a handler.
//!   That means when you receive two signals in a row, there may be a signal which invokes
//!   the default handler, nevertheless you certainly have registered the handler.
//!
//! [signal-hook]: https://docs.rs/signal-hook
//! [async-signal-safe]: http://www.man7.org/linux/man-pages/man7/signal-safety.7.html

extern crate libc;

mod half_lock;

use std::collections::hash_map::Entry;
use std::collections::{BTreeMap, HashMap};
use std::io::Error;
use std::mem;
#[cfg(not(windows))]
use std::ptr;
// Once::new is now a const-fn. But it is not stable in all the rustc versions we want to support
// yet.
#[allow(deprecated)]
use std::sync::ONCE_INIT;
use std::sync::{Arc, Once};

#[cfg(not(windows))]
use libc::{c_int, c_void, sigaction, siginfo_t};
#[cfg(windows)]
use libc::{c_int, sighandler_t};

#[cfg(not(windows))]
use libc::{SIGFPE, SIGILL, SIGKILL, SIGSEGV, SIGSTOP};
#[cfg(windows)]
use libc::{SIGFPE, SIGILL, SIGSEGV};

use half_lock::HalfLock;

// These constants are not defined in the current version of libc, but it actually
// exists in Windows CRT.
#[cfg(windows)]
const SIG_DFL: sighandler_t = 0;
#[cfg(windows)]
const SIG_IGN: sighandler_t = 1;
#[cfg(windows)]
const SIG_GET: sighandler_t = 2;
#[cfg(windows)]
const SIG_ERR: sighandler_t = !0;

// To simplify implementation. Not to be exposed.
#[cfg(windows)]
#[allow(non_camel_case_types)]
struct siginfo_t;

// # Internal workings
//
// This uses a form of RCU. There's an atomic pointer to the current action descriptors (in the
// form of IndependentArcSwap, to be able to track what, if any, signal handlers still use the
// version). A signal handler takes a copy of the pointer and calls all the relevant actions.
//
// Modifications to that are protected by a mutex, to avoid juggling multiple signal handlers at
// once (eg. not calling sigaction concurrently). This should not be a problem, because modifying
// the signal actions should be initialization only anyway. To avoid all allocations and also
// deallocations inside the signal handler, after replacing the pointer, the modification routine
// needs to busy-wait for the reference count on the old pointer to drop to 1 and take ownership ‒
// that way the one deallocating is the modification routine, outside of the signal handler.

#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
struct ActionId(u128);

/// An ID of registered action.
///
/// This is returned by all the registration routines and can be used to remove the action later on
/// with a call to [`unregister`].
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct SigId {
    signal: c_int,
    action: ActionId,
}

// This should be dyn Fn(...), but we want to support Rust 1.26.0 and that one doesn't allow dyn
// yet.
#[allow(unknown_lints, bare_trait_objects)]
type Action = Fn(&siginfo_t) + Send + Sync;

#[derive(Clone)]
struct Slot {
    prev: Prev,
    // We use BTreeMap here, because we want to run the actions in the order they were inserted.
    // This works, because the ActionIds are assigned in an increasing order.
    actions: BTreeMap<ActionId, Arc<Action>>,
}

impl Slot {
    #[cfg(windows)]
    fn new(signal: libc::c_int) -> Result<Self, Error> {
        let old = unsafe { libc::signal(signal, handler as sighandler_t) };
        if old == SIG_ERR {
            return Err(Error::last_os_error());
        }
        Ok(Slot {
            prev: Prev { signal, info: old },
            actions: BTreeMap::new(),
        })
    }

    #[cfg(not(windows))]
    fn new(signal: libc::c_int) -> Result<Self, Error> {
        // C data structure, expected to be zeroed out.
        let mut new: libc::sigaction = unsafe { mem::zeroed() };
        new.sa_sigaction = handler as usize;
        // Android is broken and uses different int types than the rest (and different depending on
        // the pointer width). This converts the flags to the proper type no matter what it is on
        // the given platform.
        let flags = libc::SA_RESTART | libc::SA_NOCLDSTOP;
        #[allow(unused_assignments)]
        let mut siginfo = flags;
        siginfo = libc::SA_SIGINFO as _;
        let flags = flags | siginfo;
        new.sa_flags = flags as _;
        // C data structure, expected to be zeroed out.
        let mut old: libc::sigaction = unsafe { mem::zeroed() };
        // FFI ‒ pointers are valid, it doesn't take ownership.
        if unsafe { libc::sigaction(signal, &new, &mut old) } != 0 {
            return Err(Error::last_os_error());
        }
        Ok(Slot {
            prev: Prev { signal, info: old },
            actions: BTreeMap::new(),
        })
    }
}

#[derive(Clone)]
struct SignalData {
    signals: HashMap<c_int, Slot>,
    next_id: u128,
}

#[derive(Clone)]
struct Prev {
    signal: c_int,
    #[cfg(windows)]
    info: sighandler_t,
    #[cfg(not(windows))]
    info: sigaction,
}

impl Prev {
    #[cfg(windows)]
    fn detect(signal: c_int) -> Result<Self, Error> {
        let old = unsafe { libc::signal(signal, SIG_GET) };
        if old == SIG_ERR {
            return Err(Error::last_os_error());
        }
        Ok(Prev { signal, info: old })
    }

    #[cfg(not(windows))]
    fn detect(signal: c_int) -> Result<Self, Error> {
        // C data structure, expected to be zeroed out.
        let mut old: libc::sigaction = unsafe { mem::zeroed() };
        // FFI ‒ pointers are valid, it doesn't take ownership.
        if unsafe { libc::sigaction(signal, ptr::null(), &mut old) } != 0 {
            return Err(Error::last_os_error());
        }

        Ok(Prev { signal, info: old })
    }

    #[cfg(windows)]
    fn execute(&self, sig: c_int) {
        let fptr = self.info;
        if fptr != 0 && fptr != SIG_DFL && fptr != SIG_IGN {
            // FFI ‒ calling the original signal handler.
            unsafe {
                let action = mem::transmute::<usize, extern "C" fn(c_int)>(fptr);
                action(sig);
            }
        }
    }

    #[cfg(not(windows))]
    unsafe fn execute(&self, sig: c_int, info: *mut siginfo_t, data: *mut c_void) {
        let fptr = self.info.sa_sigaction;
        if fptr != 0 && fptr != libc::SIG_DFL && fptr != libc::SIG_IGN {
            // Android is broken and uses different int types than the rest (and different
            // depending on the pointer width). This converts the flags to the proper type no
            // matter what it is on the given platform.
            //
            // The trick is to create the same-typed variable as the sa_flags first and then
            // set it to the proper value (does Rust have a way to copy a type in a different
            // way?)
            #[allow(unused_assignments)]
            let mut siginfo = self.info.sa_flags;
            siginfo = libc::SA_SIGINFO as _;
            if self.info.sa_flags & siginfo == 0 {
                let action = mem::transmute::<usize, extern "C" fn(c_int)>(fptr);
                action(sig);
            } else {
                type SigAction = extern "C" fn(c_int, *mut siginfo_t, *mut c_void);
                let action = mem::transmute::<usize, SigAction>(fptr);
                action(sig, info, data);
            }
        }
    }
}

/// Lazy-initiated data structure with our global variables.
///
/// Used inside a structure to cut down on boilerplate code to lazy-initialize stuff. We don't dare
/// use anything fancy like lazy-static or once-cell, since we are not sure they are
/// async-signal-safe in their access. Our code uses the [Once], but only on the write end outside
/// of signal handler. The handler assumes it has already been initialized.
struct GlobalData {
    /// The data structure describing what needs to be run for each signal.
    data: HalfLock<SignalData>,

    /// A fallback to fight/minimize a race condition during signal initialization.
    ///
    /// See the comment inside [`register_unchecked_impl`].
    race_fallback: HalfLock<Option<Prev>>,
}

static mut GLOBAL_DATA: Option<GlobalData> = None;
#[allow(deprecated)]
static GLOBAL_INIT: Once = ONCE_INIT;

impl GlobalData {
    fn get() -> &'static Self {
        unsafe { GLOBAL_DATA.as_ref().unwrap() }
    }
    fn ensure() -> &'static Self {
        GLOBAL_INIT.call_once(|| unsafe {
            GLOBAL_DATA = Some(GlobalData {
                data: HalfLock::new(SignalData {
                    signals: HashMap::new(),
                    next_id: 1,
                }),
                race_fallback: HalfLock::new(None),
            });
        });
        Self::get()
    }
}

#[cfg(windows)]
extern "C" fn handler(sig: c_int) {
    if sig != SIGFPE {
        // Windows CRT `signal` resets handler every time, unless for SIGFPE.
        // Reregister the handler to retain maximal compatibility.
        // Problems:
        // - It's racy. But this is inevitably racy in Windows.
        // - Interacts poorly with handlers outside signal-hook-registry.
        let old = unsafe { libc::signal(sig, handler as sighandler_t) };
        if old == SIG_ERR {
            // MSDN doesn't describe which errors might occur,
            // but we can tell from the Linux manpage that
            // EINVAL (invalid signal number) is mostly the only case.
            // Therefore, this branch must not occur.
            // In any case we can do nothing useful in the signal handler,
            // so we're going to abort silently.
            unsafe {
                libc::abort();
            }
        }
    }

    let globals = GlobalData::get();
    let fallback = globals.race_fallback.read();
    let sigdata = globals.data.read();

    if let Some(ref slot) = sigdata.signals.get(&sig) {
        slot.prev.execute(sig);

        for action in slot.actions.values() {
            action(&siginfo_t);
        }
    } else if let Some(prev) = fallback.as_ref() {
        // In case we get called but don't have the slot for this signal set up yet, we are under
        // the race condition. We may have the old signal handler stored in the fallback
        // temporarily.
        if sig == prev.signal {
            prev.execute(sig);
        }
        // else -> probably should not happen, but races with other threads are possible so
        // better safe
    }
}

#[cfg(not(windows))]
extern "C" fn handler(sig: c_int, info: *mut siginfo_t, data: *mut c_void) {
    let globals = GlobalData::get();
    let fallback = globals.race_fallback.read();
    let sigdata = globals.data.read();

    if let Some(ref slot) = sigdata.signals.get(&sig) {
        unsafe { slot.prev.execute(sig, info, data) };

        let info = unsafe { info.as_ref() };
        let info = info.unwrap_or_else(|| {
            // The info being null seems to be illegal according to POSIX, but has been observed on
            // some probably broken platform. We can't do anything about that, that is just broken,
            // but we are not allowed to panic in a signal handler, so we are left only with simply
            // aborting. We try to write a message what happens, but using the libc stuff
            // (`eprintln` is not guaranteed to be async-signal-safe).
            unsafe {
                const MSG: &[u8] =
                    b"Platform broken, got NULL as siginfo to signal handler. Aborting";
                libc::write(2, MSG.as_ptr() as *const _, MSG.len());
                libc::abort();
            }
        });

        for action in slot.actions.values() {
            action(info);
        }
    } else if let Some(ref prev) = fallback.as_ref() {
        // In case we get called but don't have the slot for this signal set up yet, we are under
        // the race condition. We may have the old signal handler stored in the fallback
        // temporarily.
        if prev.signal == sig {
            unsafe { prev.execute(sig, info, data) };
        }
        // else -> probably should not happen, but races with other threads are possible so
        // better safe
    }
}

/// List of forbidden signals.
///
/// Some signals are impossible to replace according to POSIX and some are so special that this
/// library refuses to handle them (eg. SIGSEGV). The routines panic in case registering one of
/// these signals is attempted.
///
/// See [`register`].
pub const FORBIDDEN: &[c_int] = FORBIDDEN_IMPL;

#[cfg(windows)]
const FORBIDDEN_IMPL: &[c_int] = &[SIGILL, SIGFPE, SIGSEGV];
#[cfg(not(windows))]
const FORBIDDEN_IMPL: &[c_int] = &[SIGKILL, SIGSTOP, SIGILL, SIGFPE, SIGSEGV];

/// Registers an arbitrary action for the given signal.
///
/// This makes sure there's a signal handler for the given signal. It then adds the action to the
/// ones called each time the signal is delivered. If multiple actions are set for the same signal,
/// all are called, in the order of registration.
///
/// If there was a previous signal handler for the given signal, it is chained ‒ it will be called
/// as part of this library's signal handler, before any actions set through this function.
///
/// On success, the function returns an ID that can be used to remove the action again with
/// [`unregister`].
///
/// # Panics
///
/// If the signal is one of (see [`FORBIDDEN`]):
///
/// * `SIGKILL`
/// * `SIGSTOP`
/// * `SIGILL`
/// * `SIGFPE`
/// * `SIGSEGV`
///
/// The first two are not possible to override (and the underlying C functions simply ignore all
/// requests to do so, which smells of possible bugs, or return errors). The rest can be set, but
/// generally needs very special handling to do so correctly (direct manipulation of the
/// application's address space, `longjmp` and similar). Unless you know very well what you're
/// doing, you'll shoot yourself into the foot and this library won't help you with that.
///
/// # Errors
///
/// Since the library manipulates signals using the low-level C functions, all these can return
/// errors. Generally, the errors mean something like the specified signal does not exist on the
/// given platform ‒ after a program is debugged and tested on a given OS, it should never return
/// an error.
///
/// However, if an error *is* returned, there are no guarantees if the given action was registered
/// or not.
///
/// # Safety
///
/// This function is unsafe, because the `action` is run inside a signal handler. The set of
/// functions allowed to be called from within is very limited (they are called async-signal-safe
/// functions by POSIX). These specifically do *not* contain mutexes and memory
/// allocation/deallocation. They *do* contain routines to terminate the program, to further
/// manipulate signals (by the low-level functions, not by this library) and to read and write file
/// descriptors. Calling program's own functions consisting only of these is OK, as is manipulating
/// program's variables ‒ however, as the action can be called on any thread that does not have the
/// given signal masked (by default no signal is masked on any thread), and mutexes are a no-go,
/// this is harder than it looks like at first.
///
/// As panicking from within a signal handler would be a panic across FFI boundary (which is
/// undefined behavior), the passed handler must not panic.
///
/// If you find these limitations hard to satisfy, choose from the helper functions in the
/// [signal-hook](https://docs.rs/signal-hook) crate ‒ these provide safe interface to use some
/// common signal handling patters.
///
/// # Race condition
///
/// Upon registering the first hook for a given signal into this library, there's a short race
/// condition under the following circumstances:
///
/// * The program already has a signal handler installed for this particular signal (through some
///   other library, possibly).
/// * Concurrently, some other thread installs a different signal handler while it is being
///   installed by this library.
/// * At the same time, the signal is delivered.
///
/// Under such conditions signal-hook might wrongly "chain" to the older signal handler for a short
/// while (until the registration is fully complete).
///
/// Note that the exact conditions of the race condition might change in future versions of the
/// library. The recommended way to avoid it is to register signals before starting any additional
/// threads, or at least not to register signals concurrently.
///
/// Alternatively, make sure all signals are handled through this library.
///
/// # Performance
///
/// Even when it is possible to repeatedly install and remove actions during the lifetime of a
/// program, the installation and removal is considered a slow operation and should not be done
/// very often. Also, there's limited (though huge) amount of distinct IDs (they are `u128`).
///
/// # Examples
///
/// ```rust
/// extern crate signal_hook_registry;
///
/// use std::io::Error;
/// use std::process;
///
/// fn main() -> Result<(), Error> {
///     let signal = unsafe {
///         signal_hook_registry::register(signal_hook::consts::SIGTERM, || process::abort())
///     }?;
///     // Stuff here...
///     signal_hook_registry::unregister(signal); // Not really necessary.
///     Ok(())
/// }
/// ```
pub unsafe fn register<F>(signal: c_int, action: F) -> Result<SigId, Error>
where
    F: Fn() + Sync + Send + 'static,
{
    register_sigaction_impl(signal, move |_: &_| action())
}

/// Register a signal action.
///
/// This acts in the same way as [`register`], including the drawbacks, panics and performance
/// characteristics. The only difference is the provided action accepts a [`siginfo_t`] argument,
/// providing information about the received signal.
///
/// # Safety
///
/// See the details of [`register`].
#[cfg(not(windows))]
pub unsafe fn register_sigaction<F>(signal: c_int, action: F) -> Result<SigId, Error>
where
    F: Fn(&siginfo_t) + Sync + Send + 'static,
{
    register_sigaction_impl(signal, action)
}

unsafe fn register_sigaction_impl<F>(signal: c_int, action: F) -> Result<SigId, Error>
where
    F: Fn(&siginfo_t) + Sync + Send + 'static,
{
    assert!(
        !FORBIDDEN.contains(&signal),
        "Attempted to register forbidden signal {}",
        signal,
    );
    register_unchecked_impl(signal, action)
}

/// Register a signal action without checking for forbidden signals.
///
/// This acts in the same way as [`register_unchecked`], including the drawbacks, panics and
/// performance characteristics. The only difference is the provided action doesn't accept a
/// [`siginfo_t`] argument.
///
/// # Safety
///
/// See the details of [`register`].
pub unsafe fn register_signal_unchecked<F>(signal: c_int, action: F) -> Result<SigId, Error>
where
    F: Fn() + Sync + Send + 'static,
{
    register_unchecked_impl(signal, move |_: &_| action())
}

/// Register a signal action without checking for forbidden signals.
///
/// This acts the same way as [`register_sigaction`], but without checking for the [`FORBIDDEN`]
/// signals. All the signals passed are registered and it is up to the caller to make some sense of
/// them.
///
/// Note that you really need to know what you're doing if you change eg. the `SIGSEGV` signal
/// handler. Generally, you don't want to do that. But unlike the other functions here, this
/// function still allows you to do it.
///
/// # Safety
///
/// See the details of [`register`].
#[cfg(not(windows))]
pub unsafe fn register_unchecked<F>(signal: c_int, action: F) -> Result<SigId, Error>
where
    F: Fn(&siginfo_t) + Sync + Send + 'static,
{
    register_unchecked_impl(signal, action)
}

unsafe fn register_unchecked_impl<F>(signal: c_int, action: F) -> Result<SigId, Error>
where
    F: Fn(&siginfo_t) + Sync + Send + 'static,
{
    let globals = GlobalData::ensure();
    let action = Arc::from(action);

    let mut lock = globals.data.write();

    let mut sigdata = SignalData::clone(&lock);
    let id = ActionId(sigdata.next_id);
    sigdata.next_id += 1;

    match sigdata.signals.entry(signal) {
        Entry::Occupied(mut occupied) => {
            assert!(occupied.get_mut().actions.insert(id, action).is_none());
        }
        Entry::Vacant(place) => {
            // While the sigaction/signal exchanges the old one atomically, we are not able to
            // atomically store it somewhere a signal handler could read it. That poses a race
            // condition where we could lose some signals delivered in between changing it and
            // storing it.
            //
            // Therefore we first store the old one in the fallback storage. The fallback only
            // covers the cases where the slot is not yet active and becomes "inert" after that,
            // even if not removed (it may get overwritten by some other signal, but for that the
            // mutex in globals.data must be unlocked here - and by that time we already stored the
            // slot.
            //
            // And yes, this still leaves a short race condition when some other thread could
            // replace the signal handler and we would be calling the outdated one for a short
            // time, until we install the slot.
            globals
                .race_fallback
                .write()
                .store(Some(Prev::detect(signal)?));

            let mut slot = Slot::new(signal)?;
            slot.actions.insert(id, action);
            place.insert(slot);
        }
    }

    lock.store(sigdata);

    Ok(SigId { signal, action: id })
}

/// Removes a previously installed action.
///
/// This function does nothing if the action was already removed. It returns true if it was removed
/// and false if the action wasn't found.
///
/// It can unregister all the actions installed by [`register`] as well as the ones from downstream
/// crates (like [`signal-hook`](https://docs.rs/signal-hook)).
///
/// # Warning
///
/// This does *not* currently return the default/previous signal handler if the last action for a
/// signal was just unregistered. That means that if you replaced for example `SIGTERM` and then
/// removed the action, the program will effectively ignore `SIGTERM` signals from now on, not
/// terminate on them as is the default action. This is OK if you remove it as part of a shutdown,
/// but it is not recommended to remove termination actions during the normal runtime of
/// application (unless the desired effect is to create something that can be terminated only by
/// SIGKILL).
pub fn unregister(id: SigId) -> bool {
    let globals = GlobalData::ensure();
    let mut replace = false;
    let mut lock = globals.data.write();
    let mut sigdata = SignalData::clone(&lock);
    if let Some(slot) = sigdata.signals.get_mut(&id.signal) {
        replace = slot.actions.remove(&id.action).is_some();
    }
    if replace {
        lock.store(sigdata);
    }
    replace
}

// We keep this one here for strict backwards compatibility, but the API is kind of bad. One can
// delete actions that don't belong to them, which is kind of against the whole idea of not
// breaking stuff for others.
#[deprecated(
    since = "1.3.0",
    note = "Don't use. Can influence unrelated parts of program / unknown actions"
)]
#[doc(hidden)]
pub fn unregister_signal(signal: c_int) -> bool {
    let globals = GlobalData::ensure();
    let mut replace = false;
    let mut lock = globals.data.write();
    let mut sigdata = SignalData::clone(&lock);
    if let Some(slot) = sigdata.signals.get_mut(&signal) {
        if !slot.actions.is_empty() {
            slot.actions.clear();
            replace = true;
        }
    }
    if replace {
        lock.store(sigdata);
    }
    replace
}

#[cfg(test)]
mod tests {
    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::Arc;
    use std::thread;
    use std::time::Duration;

    #[cfg(not(windows))]
    use libc::{pid_t, SIGUSR1, SIGUSR2};

    #[cfg(windows)]
    use libc::SIGTERM as SIGUSR1;
    #[cfg(windows)]
    use libc::SIGTERM as SIGUSR2;

    use super::*;

    #[test]
    #[should_panic]
    fn panic_forbidden() {
        let _ = unsafe { register(SIGILL, || ()) };
    }

    /// Registering the forbidden signals is allowed in the _unchecked version.
    #[test]
    fn forbidden_raw() {
        unsafe { register_signal_unchecked(SIGFPE, || std::process::abort()).unwrap() };
    }

    #[test]
    fn signal_without_pid() {
        let status = Arc::new(AtomicUsize::new(0));
        let action = {
            let status = Arc::clone(&status);
            move || {
                status.store(1, Ordering::Relaxed);
            }
        };
        unsafe {
            register(SIGUSR2, action).unwrap();
            libc::raise(SIGUSR2);
        }
        for _ in 0..10 {
            thread::sleep(Duration::from_millis(100));
            let current = status.load(Ordering::Relaxed);
            match current {
                // Not yet
                0 => continue,
                // Good, we are done with the correct result
                _ if current == 1 => return,
                _ => panic!("Wrong result value {}", current),
            }
        }
        panic!("Timed out waiting for the signal");
    }

    #[test]
    #[cfg(not(windows))]
    fn signal_with_pid() {
        let status = Arc::new(AtomicUsize::new(0));
        let action = {
            let status = Arc::clone(&status);
            move |siginfo: &siginfo_t| {
                // Hack: currently, libc exposes only the first 3 fields of siginfo_t. The pid
                // comes somewhat later on. Therefore, we do a Really Ugly Hack and define our
                // own structure (and hope it is correct on all platforms). But hey, this is
                // only the tests, so we are going to get away with this.
                #[repr(C)]
                struct SigInfo {
                    _fields: [c_int; 3],
                    #[cfg(all(target_pointer_width = "64", target_os = "linux"))]
                    _pad: c_int,
                    pid: pid_t,
                }
                let s: &SigInfo = unsafe {
                    (siginfo as *const _ as usize as *const SigInfo)
                        .as_ref()
                        .unwrap()
                };
                status.store(s.pid as usize, Ordering::Relaxed);
            }
        };
        let pid;
        unsafe {
            pid = libc::getpid();
            register_sigaction(SIGUSR2, action).unwrap();
            libc::raise(SIGUSR2);
        }
        for _ in 0..10 {
            thread::sleep(Duration::from_millis(100));
            let current = status.load(Ordering::Relaxed);
            match current {
                // Not yet (PID == 0 doesn't happen)
                0 => continue,
                // Good, we are done with the correct result
                _ if current == pid as usize => return,
                _ => panic!("Wrong status value {}", current),
            }
        }
        panic!("Timed out waiting for the signal");
    }

    /// Check that registration works as expected and that unregister tells if it did or not.
    #[test]
    fn register_unregister() {
        let signal = unsafe { register(SIGUSR1, || ()).unwrap() };
        // It was there now, so we can unregister
        assert!(unregister(signal));
        // The next time unregistering does nothing and tells us so.
        assert!(!unregister(signal));
    }
}