1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2019 Oleg Andreev
// See LICENSE for licensing information.
//
// Authors:
// - Oleg Andreev <[email protected]>

//! Implementation of a variant of Pippenger's algorithm.

#![allow(non_snake_case)]

use core::borrow::Borrow;

use edwards::EdwardsPoint;
use scalar::Scalar;
use traits::VartimeMultiscalarMul;

#[allow(unused_imports)]
use prelude::*;

/// Implements a version of Pippenger's algorithm.
///
/// The algorithm works as follows:
///
/// Let `n` be a number of point-scalar pairs.
/// Let `w` be a window of bits (6..8, chosen based on `n`, see cost factor).
///
/// 1. Prepare `2^(w-1) - 1` buckets with indices `[1..2^(w-1))` initialized with identity points.
///    Bucket 0 is not needed as it would contain points multiplied by 0.
/// 2. Convert scalars to a radix-`2^w` representation with signed digits in `[-2^w/2, 2^w/2]`.
///    Note: only the last digit may equal `2^w/2`.
/// 3. Starting with the last window, for each point `i=[0..n)` add it to a a bucket indexed by
///    the point's scalar's value in the window.
/// 4. Once all points in a window are sorted into buckets, add buckets by multiplying each
///    by their index. Efficient way of doing it is to start with the last bucket and compute two sums:
///    intermediate sum from the last to the first, and the full sum made of all intermediate sums.
/// 5. Shift the resulting sum of buckets by `w` bits by using `w` doublings.
/// 6. Add to the return value.
/// 7. Repeat the loop.
///
/// Approximate cost w/o wNAF optimizations (A = addition, D = doubling):
///
/// ```ascii
/// cost = (n*A + 2*(2^w/2)*A + w*D + A)*256/w
///          |          |       |     |   |
///          |          |       |     |   looping over 256/w windows
///          |          |       |     adding to the result
///    sorting points   |       shifting the sum by w bits (to the next window, starting from last window)
///    one by one       |
///    into buckets     adding/subtracting all buckets
///                     multiplied by their indexes
///                     using a sum of intermediate sums
/// ```
///
/// For large `n`, dominant factor is (n*256/w) additions.
/// However, if `w` is too big and `n` is not too big, then `(2^w/2)*A` could dominate.
/// Therefore, the optimal choice of `w` grows slowly as `n` grows.
///
/// This algorithm is adapted from section 4 of https://eprint.iacr.org/2012/549.pdf.
pub struct Pippenger;

#[cfg(any(feature = "alloc", feature = "std"))]
impl VartimeMultiscalarMul for Pippenger {
    type Point = EdwardsPoint;

    fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<EdwardsPoint>
    where
        I: IntoIterator,
        I::Item: Borrow<Scalar>,
        J: IntoIterator<Item = Option<EdwardsPoint>>,
    {
        use traits::Identity;

        let mut scalars = scalars.into_iter();
        let size = scalars.by_ref().size_hint().0;

        // Digit width in bits. As digit width grows,
        // number of point additions goes down, but amount of
        // buckets and bucket additions grows exponentially.
        let w = if size < 500 {
            6
        } else if size < 800 {
            7
        } else {
            8
        };

        let max_digit: usize = 1 << w;
        let digits_count: usize = Scalar::to_radix_2w_size_hint(w);
        let buckets_count: usize = max_digit / 2; // digits are signed+centered hence 2^w/2, excluding 0-th bucket

        // Collect optimized scalars and points in buffers for repeated access
        // (scanning the whole set per digit position).
        let scalars = scalars
            .map(|s| s.borrow().to_radix_2w(w));

        let points = points
            .into_iter()
            .map(|p| p.map(|P| P.to_projective_niels()));

        let scalars_points = scalars
            .zip(points)
            .map(|(s, maybe_p)| maybe_p.map(|p| (s, p)))
            .collect::<Option<Vec<_>>>()?;

        // Prepare 2^w/2 buckets.
        // buckets[i] corresponds to a multiplication factor (i+1).
        let mut buckets: Vec<_> = (0..buckets_count)
            .map(|_| EdwardsPoint::identity())
            .collect();

        let mut columns = (0..digits_count).rev().map(|digit_index| {
            // Clear the buckets when processing another digit.
            for i in 0..buckets_count {
                buckets[i] = EdwardsPoint::identity();
            }

            // Iterate over pairs of (point, scalar)
            // and add/sub the point to the corresponding bucket.
            // Note: if we add support for precomputed lookup tables,
            // we'll be adding/subtracting point premultiplied by `digits[i]` to buckets[0].
            for (digits, pt) in scalars_points.iter() {
                // Widen digit so that we don't run into edge cases when w=8.
                let digit = digits[digit_index] as i16;
                if digit > 0 {
                    let b = (digit - 1) as usize;
                    buckets[b] = (&buckets[b] + pt).to_extended();
                } else if digit < 0 {
                    let b = (-digit - 1) as usize;
                    buckets[b] = (&buckets[b] - pt).to_extended();
                }
            }

            // Add the buckets applying the multiplication factor to each bucket.
            // The most efficient way to do that is to have a single sum with two running sums:
            // an intermediate sum from last bucket to the first, and a sum of intermediate sums.
            //
            // For example, to add buckets 1*A, 2*B, 3*C we need to add these points:
            //   C
            //   C B
            //   C B A   Sum = C + (C+B) + (C+B+A)
            let mut buckets_intermediate_sum = buckets[buckets_count - 1];
            let mut buckets_sum = buckets[buckets_count - 1];
            for i in (0..(buckets_count - 1)).rev() {
                buckets_intermediate_sum += buckets[i];
                buckets_sum += buckets_intermediate_sum;
            }

            buckets_sum
        });

        // Take the high column as an initial value to avoid wasting time doubling the identity element in `fold()`.
        // `unwrap()` always succeeds because we know we have more than zero digits.
        let hi_column = columns.next().unwrap();

        Some(
            columns
                .fold(hi_column, |total, p| total.mul_by_pow_2(w as u32) + p),
        )
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use constants;
    use scalar::Scalar;

    #[test]
    fn test_vartime_pippenger() {
        // Reuse points across different tests
        let mut n = 512;
        let x = Scalar::from(2128506u64).invert();
        let y = Scalar::from(4443282u64).invert();
        let points: Vec<_> = (0..n)
            .map(|i| constants::ED25519_BASEPOINT_POINT * Scalar::from(1 + i as u64))
            .collect();
        let scalars: Vec<_> = (0..n)
            .map(|i| x + (Scalar::from(i as u64) * y)) // fast way to make ~random but deterministic scalars
            .collect();

        let premultiplied: Vec<EdwardsPoint> = scalars
            .iter()
            .zip(points.iter())
            .map(|(sc, pt)| sc * pt)
            .collect();

        while n > 0 {
            let scalars = &scalars[0..n].to_vec();
            let points = &points[0..n].to_vec();
            let control: EdwardsPoint = premultiplied[0..n].iter().sum();

            let subject = Pippenger::vartime_multiscalar_mul(scalars.clone(), points.clone());

            assert_eq!(subject.compress(), control.compress());

            n = n / 2;
        }
    }
}