1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
use crate::crds_value::sanitize_wallclock;
use itertools::Itertools;
use solana_ledger::{
    blockstore_meta::DuplicateSlotProof,
    shred::{Shred, ShredError, ShredType},
};
use solana_sdk::{
    clock::Slot,
    pubkey::Pubkey,
    sanitize::{Sanitize, SanitizeError},
};
use std::{
    collections::{hash_map::Entry, HashMap},
    convert::TryFrom,
    num::TryFromIntError,
};
use thiserror::Error;

const DUPLICATE_SHRED_HEADER_SIZE: usize = 63;

pub(crate) type DuplicateShredIndex = u16;
pub(crate) const MAX_DUPLICATE_SHREDS: DuplicateShredIndex = 512;

/// Function returning leader at a given slot.
pub trait LeaderScheduleFn: FnOnce(Slot) -> Option<Pubkey> {}
impl<F> LeaderScheduleFn for F where F: FnOnce(Slot) -> Option<Pubkey> {}

#[derive(Clone, Debug, PartialEq, AbiExample, Deserialize, Serialize)]
pub struct DuplicateShred {
    pub(crate) from: Pubkey,
    pub(crate) wallclock: u64,
    pub(crate) slot: Slot,
    shred_index: u32,
    shred_type: ShredType,
    // Serialized DuplicateSlotProof split into chunks.
    num_chunks: u8,
    chunk_index: u8,
    #[serde(with = "serde_bytes")]
    chunk: Vec<u8>,
}

#[derive(Debug, Error)]
pub enum Error {
    #[error("data chunk mismatch")]
    DataChunkMismatch,
    #[error("invalid chunk index")]
    InvalidChunkIndex,
    #[error("invalid duplicate shreds")]
    InvalidDuplicateShreds,
    #[error("invalid duplicate slot proof")]
    InvalidDuplicateSlotProof,
    #[error("invalid signature")]
    InvalidSignature,
    #[error("invalid size limit")]
    InvalidSizeLimit,
    #[error("invalid shred")]
    InvalidShred(#[from] ShredError),
    #[error("number of chunks mismatch")]
    NumChunksMismatch,
    #[error("missing data chunk")]
    MissingDataChunk,
    #[error("(de)serialization error")]
    SerializationError(#[from] bincode::Error),
    #[error("shred index mismatch")]
    ShredIndexMismatch,
    #[error("shred type mismatch")]
    ShredTypeMismatch,
    #[error("slot mismatch")]
    SlotMismatch,
    #[error("type conversion error")]
    TryFromIntError(#[from] TryFromIntError),
    #[error("unknown slot leader")]
    UnknownSlotLeader,
}

// Asserts that the two shreds can indicate duplicate proof for
// the same triplet of (slot, shred-index, and shred-type_), and
// that they have valid signatures from the slot leader.
fn check_shreds(
    leader_schedule: Option<impl LeaderScheduleFn>,
    shred1: &Shred,
    shred2: &Shred,
) -> Result<(), Error> {
    if shred1.slot() != shred2.slot() {
        Err(Error::SlotMismatch)
    } else if shred1.index() != shred2.index() {
        Err(Error::ShredIndexMismatch)
    } else if shred1.common_header.shred_type != shred2.common_header.shred_type {
        Err(Error::ShredTypeMismatch)
    } else if shred1.payload == shred2.payload {
        Err(Error::InvalidDuplicateShreds)
    } else {
        if let Some(leader_schedule) = leader_schedule {
            let slot_leader = leader_schedule(shred1.slot()).ok_or(Error::UnknownSlotLeader)?;
            if !shred1.verify(&slot_leader) || !shred2.verify(&slot_leader) {
                return Err(Error::InvalidSignature);
            }
        }
        Ok(())
    }
}

/// Splits a DuplicateSlotProof into DuplicateShred
/// chunks with a size limit on each chunk.
pub fn from_duplicate_slot_proof(
    proof: &DuplicateSlotProof,
    self_pubkey: Pubkey, // Pubkey of my node broadcasting crds value.
    leader_schedule: Option<impl LeaderScheduleFn>,
    wallclock: u64,
    max_size: usize, // Maximum serialized size of each DuplicateShred.
) -> Result<impl Iterator<Item = DuplicateShred>, Error> {
    if proof.shred1 == proof.shred2 {
        return Err(Error::InvalidDuplicateSlotProof);
    }
    let shred1 = Shred::new_from_serialized_shred(proof.shred1.clone())?;
    let shred2 = Shred::new_from_serialized_shred(proof.shred2.clone())?;
    check_shreds(leader_schedule, &shred1, &shred2)?;
    let (slot, shred_index, shred_type) = (
        shred1.slot(),
        shred1.index(),
        shred1.common_header.shred_type,
    );
    let data = bincode::serialize(proof)?;
    let chunk_size = if DUPLICATE_SHRED_HEADER_SIZE < max_size {
        max_size - DUPLICATE_SHRED_HEADER_SIZE
    } else {
        return Err(Error::InvalidSizeLimit);
    };
    let chunks: Vec<_> = data.chunks(chunk_size).map(Vec::from).collect();
    let num_chunks = u8::try_from(chunks.len())?;
    let chunks = chunks
        .into_iter()
        .enumerate()
        .map(move |(i, chunk)| DuplicateShred {
            from: self_pubkey,
            wallclock,
            slot,
            shred_index,
            shred_type,
            num_chunks,
            chunk_index: i as u8,
            chunk,
        });
    Ok(chunks)
}

pub(crate) fn from_shred(
    shred: Shred,
    self_pubkey: Pubkey, // Pubkey of my node broadcasting crds value.
    other_payload: Vec<u8>,
    leader_schedule: Option<impl LeaderScheduleFn>,
    wallclock: u64,
    max_size: usize, // Maximum serialized size of each DuplicateShred.
) -> Result<impl Iterator<Item = DuplicateShred>, Error> {
    if shred.payload == other_payload {
        return Err(Error::InvalidDuplicateShreds);
    }
    let other_shred = Shred::new_from_serialized_shred(other_payload.clone())?;
    check_shreds(leader_schedule, &shred, &other_shred)?;
    let (slot, shred_index, shred_type) =
        (shred.slot(), shred.index(), shred.common_header.shred_type);
    let proof = DuplicateSlotProof {
        shred1: shred.payload,
        shred2: other_payload,
    };
    let data = bincode::serialize(&proof)?;
    let chunk_size = if DUPLICATE_SHRED_HEADER_SIZE < max_size {
        max_size - DUPLICATE_SHRED_HEADER_SIZE
    } else {
        return Err(Error::InvalidSizeLimit);
    };
    let chunks: Vec<_> = data.chunks(chunk_size).map(Vec::from).collect();
    let num_chunks = u8::try_from(chunks.len())?;
    let chunks = chunks
        .into_iter()
        .enumerate()
        .map(move |(i, chunk)| DuplicateShred {
            from: self_pubkey,
            wallclock,
            slot,
            shred_index,
            shred_type,
            num_chunks,
            chunk_index: i as u8,
            chunk,
        });
    Ok(chunks)
}

// Returns a predicate checking if a duplicate-shred chunk matches
// (slot, shred_index, shred_type) and has valid chunk_index.
fn check_chunk(
    slot: Slot,
    shred_index: u32,
    shred_type: ShredType,
    num_chunks: u8,
) -> impl Fn(&DuplicateShred) -> Result<(), Error> {
    move |dup| {
        if dup.slot != slot {
            Err(Error::SlotMismatch)
        } else if dup.shred_index != shred_index {
            Err(Error::ShredIndexMismatch)
        } else if dup.shred_type != shred_type {
            Err(Error::ShredTypeMismatch)
        } else if dup.num_chunks != num_chunks {
            Err(Error::NumChunksMismatch)
        } else if dup.chunk_index >= num_chunks {
            Err(Error::InvalidChunkIndex)
        } else {
            Ok(())
        }
    }
}

/// Reconstructs the duplicate shreds from chunks of DuplicateShred.
pub fn into_shreds(
    chunks: impl IntoIterator<Item = DuplicateShred>,
    leader: impl LeaderScheduleFn,
) -> Result<(Shred, Shred), Error> {
    let mut chunks = chunks.into_iter();
    let DuplicateShred {
        slot,
        shred_index,
        shred_type,
        num_chunks,
        chunk_index,
        chunk,
        ..
    } = match chunks.next() {
        None => return Err(Error::InvalidDuplicateShreds),
        Some(chunk) => chunk,
    };
    let slot_leader = leader(slot).ok_or(Error::UnknownSlotLeader)?;
    let check_chunk = check_chunk(slot, shred_index, shred_type, num_chunks);
    let mut data = HashMap::new();
    data.insert(chunk_index, chunk);
    for chunk in chunks {
        check_chunk(&chunk)?;
        match data.entry(chunk.chunk_index) {
            Entry::Vacant(entry) => {
                entry.insert(chunk.chunk);
            }
            Entry::Occupied(entry) => {
                if *entry.get() != chunk.chunk {
                    return Err(Error::DataChunkMismatch);
                }
            }
        }
    }
    if data.len() != num_chunks as usize {
        return Err(Error::MissingDataChunk);
    }
    let data = (0..num_chunks).map(|k| data.remove(&k).unwrap()).concat();
    let proof: DuplicateSlotProof = bincode::deserialize(&data)?;
    if proof.shred1 == proof.shred2 {
        return Err(Error::InvalidDuplicateSlotProof);
    }
    let shred1 = Shred::new_from_serialized_shred(proof.shred1)?;
    let shred2 = Shred::new_from_serialized_shred(proof.shred2)?;
    if shred1.slot() != slot || shred2.slot() != slot {
        Err(Error::SlotMismatch)
    } else if shred1.index() != shred_index || shred2.index() != shred_index {
        Err(Error::ShredIndexMismatch)
    } else if shred1.common_header.shred_type != shred_type
        || shred2.common_header.shred_type != shred_type
    {
        Err(Error::ShredTypeMismatch)
    } else if shred1.payload == shred2.payload {
        Err(Error::InvalidDuplicateShreds)
    } else if !shred1.verify(&slot_leader) || !shred2.verify(&slot_leader) {
        Err(Error::InvalidSignature)
    } else {
        Ok((shred1, shred2))
    }
}

impl Sanitize for DuplicateShred {
    fn sanitize(&self) -> Result<(), SanitizeError> {
        sanitize_wallclock(self.wallclock)?;
        if self.chunk_index >= self.num_chunks {
            return Err(SanitizeError::IndexOutOfBounds);
        }
        self.from.sanitize()
    }
}

#[cfg(test)]
pub(crate) mod tests {
    use super::*;
    use rand::Rng;
    use solana_ledger::{entry::Entry, shred::Shredder};
    use solana_sdk::{hash, signature::Keypair, signature::Signer, system_transaction};
    use std::sync::Arc;

    #[test]
    fn test_duplicate_shred_header_size() {
        let dup = DuplicateShred {
            from: Pubkey::new_unique(),
            wallclock: u64::MAX,
            slot: Slot::MAX,
            shred_index: u32::MAX,
            shred_type: ShredType(u8::MAX),
            num_chunks: u8::MAX,
            chunk_index: u8::MAX,
            chunk: Vec::default(),
        };
        assert_eq!(
            bincode::serialize(&dup).unwrap().len(),
            DUPLICATE_SHRED_HEADER_SIZE
        );
        assert_eq!(
            bincode::serialized_size(&dup).unwrap(),
            DUPLICATE_SHRED_HEADER_SIZE as u64
        );
    }

    pub fn new_rand_shred<R: Rng>(
        rng: &mut R,
        next_shred_index: u32,
        shredder: &Shredder,
    ) -> Shred {
        let entries: Vec<_> = std::iter::repeat_with(|| {
            let tx = system_transaction::transfer(
                &Keypair::new(),       // from
                &Pubkey::new_unique(), // to
                rng.gen(),             // lamports
                hash::new_rand(rng),   // recent blockhash
            );
            Entry::new(
                &hash::new_rand(rng), // prev_hash
                1,                    // num_hashes,
                vec![tx],             // transactions
            )
        })
        .take(5)
        .collect();
        let (mut data_shreds, _coding_shreds, _last_shred_index) = shredder.entries_to_shreds(
            &entries,
            true, // is_last_in_slot
            next_shred_index,
        );
        data_shreds.swap_remove(0)
    }

    #[test]
    fn test_duplicate_shred_round_trip() {
        let mut rng = rand::thread_rng();
        let leader = Arc::new(Keypair::new());
        let (slot, parent_slot, fec_rate, reference_tick, version) =
            (53084024, 53084023, 0.0, 0, 0);
        let shredder = Shredder::new(
            slot,
            parent_slot,
            fec_rate,
            leader.clone(),
            reference_tick,
            version,
        )
        .unwrap();
        let next_shred_index = rng.gen();
        let shred1 = new_rand_shred(&mut rng, next_shred_index, &shredder);
        let shred2 = new_rand_shred(&mut rng, next_shred_index, &shredder);
        let leader_schedule = |s| {
            if s == slot {
                Some(leader.pubkey())
            } else {
                None
            }
        };
        let chunks: Vec<_> = from_shred(
            shred1.clone(),
            Pubkey::new_unique(), // self_pubkey
            shred2.payload.clone(),
            Some(leader_schedule),
            rng.gen(), // wallclock
            512,       // max_size
        )
        .unwrap()
        .collect();
        assert!(chunks.len() > 4);
        let (shred3, shred4) = into_shreds(chunks, leader_schedule).unwrap();
        assert_eq!(shred1, shred3);
        assert_eq!(shred2, shred4);
    }
}