1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// Copyright 2020 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Generetes trie root.
//!
//! This module should be used to generate trie root hash.

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(feature = "std")]
mod rstd {
	pub use std::collections::BTreeMap;
}

#[cfg(not(feature = "std"))]
mod rstd {
	pub use alloc::collections::BTreeMap;
	pub use alloc::vec::Vec;
}

use core::cmp;
use core::iter::once;
use rstd::*;

use hash_db::Hasher;
use rlp::RlpStream;

fn shared_prefix_len<T: Eq>(first: &[T], second: &[T]) -> usize {
	first.iter().zip(second.iter()).position(|(f, s)| f != s).unwrap_or_else(|| cmp::min(first.len(), second.len()))
}

/// Generates a trie root hash for a vector of values
///
/// ```
/// use hex_literal::hex;
/// use ethereum_types::H256;
/// use triehash::ordered_trie_root;
/// use keccak_hasher::KeccakHasher;
///
/// let v = &["doe", "reindeer"];
/// let root = H256::from(hex!("e766d5d51b89dc39d981b41bda63248d7abce4f0225eefd023792a540bcffee3"));
/// assert_eq!(ordered_trie_root::<KeccakHasher, _>(v), root.as_ref());
/// ```
pub fn ordered_trie_root<H, I>(input: I) -> H::Out
where
	I: IntoIterator,
	I::Item: AsRef<[u8]>,
	H: Hasher,
	<H as hash_db::Hasher>::Out: cmp::Ord,
{
	trie_root::<H, _, _, _>(input.into_iter().enumerate().map(|(i, v)| (rlp::encode(&i), v)))
}

/// Generates a trie root hash for a vector of key-value tuples
///
/// ```
/// use hex_literal::hex;
/// use triehash::trie_root;
/// use ethereum_types::H256;
/// use keccak_hasher::KeccakHasher;
///
/// let v = vec![
/// 	("doe", "reindeer"),
/// 	("dog", "puppy"),
/// 	("dogglesworth", "cat"),
/// ];
///
/// let root = H256::from(hex!("8aad789dff2f538bca5d8ea56e8abe10f4c7ba3a5dea95fea4cd6e7c3a1168d3"));
/// assert_eq!(trie_root::<KeccakHasher, _, _, _>(v), root.as_ref());
/// ```
pub fn trie_root<H, I, A, B>(input: I) -> H::Out
where
	I: IntoIterator<Item = (A, B)>,
	A: AsRef<[u8]> + Ord,
	B: AsRef<[u8]>,
	H: Hasher,
	<H as hash_db::Hasher>::Out: cmp::Ord,
{
	// first put elements into btree to sort them and to remove duplicates
	let input = input.into_iter().collect::<BTreeMap<_, _>>();

	let mut nibbles = Vec::with_capacity(input.keys().map(|k| k.as_ref().len()).sum::<usize>() * 2);
	let mut lens = Vec::with_capacity(input.len() + 1);
	lens.push(0);
	for k in input.keys() {
		for &b in k.as_ref() {
			nibbles.push(b >> 4);
			nibbles.push(b & 0x0F);
		}
		lens.push(nibbles.len());
	}

	// then move them to a vector
	let input = input.into_iter().zip(lens.windows(2)).map(|((_, v), w)| (&nibbles[w[0]..w[1]], v)).collect::<Vec<_>>();

	let mut stream = RlpStream::new();
	hash256rlp::<H, _, _>(&input, 0, &mut stream);
	H::hash(&stream.out())
}

/// Generates a key-hashed (secure) trie root hash for a vector of key-value tuples.
///
/// ```
/// use hex_literal::hex;
/// use ethereum_types::H256;
/// use triehash::sec_trie_root;
/// use keccak_hasher::KeccakHasher;
///
/// let v = vec![
/// 	("doe", "reindeer"),
/// 	("dog", "puppy"),
/// 	("dogglesworth", "cat"),
/// ];
///
/// let root = H256::from(hex!("d4cd937e4a4368d7931a9cf51686b7e10abb3dce38a39000fd7902a092b64585"));
/// assert_eq!(sec_trie_root::<KeccakHasher, _, _, _>(v), root.as_ref());
/// ```
pub fn sec_trie_root<H, I, A, B>(input: I) -> H::Out
where
	I: IntoIterator<Item = (A, B)>,
	A: AsRef<[u8]>,
	B: AsRef<[u8]>,
	H: Hasher,
	<H as hash_db::Hasher>::Out: cmp::Ord,
{
	trie_root::<H, _, _, _>(input.into_iter().map(|(k, v)| (H::hash(k.as_ref()), v)))
}

/// Hex-prefix Notation. First nibble has flags: oddness = 2^0 & termination = 2^1.
///
/// The "termination marker" and "leaf-node" specifier are completely equivalent.
///
/// Input values are in range `[0, 0xf]`.
///
/// ```markdown
///  [0,0,1,2,3,4,5]   0x10012345 // 7 > 4
///  [0,1,2,3,4,5]     0x00012345 // 6 > 4
///  [1,2,3,4,5]       0x112345   // 5 > 3
///  [0,0,1,2,3,4]     0x00001234 // 6 > 3
///  [0,1,2,3,4]       0x101234   // 5 > 3
///  [1,2,3,4]         0x001234   // 4 > 3
///  [0,0,1,2,3,4,5,T] 0x30012345 // 7 > 4
///  [0,0,1,2,3,4,T]   0x20001234 // 6 > 4
///  [0,1,2,3,4,5,T]   0x20012345 // 6 > 4
///  [1,2,3,4,5,T]     0x312345   // 5 > 3
///  [1,2,3,4,T]       0x201234   // 4 > 3
/// ```
fn hex_prefix_encode<'a>(nibbles: &'a [u8], leaf: bool) -> impl Iterator<Item = u8> + 'a {
	let inlen = nibbles.len();
	let oddness_factor = inlen % 2;

	let first_byte = {
		let mut bits = ((inlen as u8 & 1) + (2 * leaf as u8)) << 4;
		if oddness_factor == 1 {
			bits += nibbles[0];
		}
		bits
	};
	once(first_byte).chain(nibbles[oddness_factor..].chunks(2).map(|ch| ch[0] << 4 | ch[1]))
}

fn hash256rlp<H, A, B>(input: &[(A, B)], pre_len: usize, stream: &mut RlpStream)
where
	A: AsRef<[u8]>,
	B: AsRef<[u8]>,
	H: Hasher,
{
	let inlen = input.len();

	// in case of empty slice, just append empty data
	if inlen == 0 {
		stream.append_empty_data();
		return;
	}

	// take slices
	let key: &[u8] = &input[0].0.as_ref();
	let value: &[u8] = &input[0].1.as_ref();

	// if the slice contains just one item, append the suffix of the key
	// and then append value
	if inlen == 1 {
		stream.begin_list(2);
		stream.append_iter(hex_prefix_encode(&key[pre_len..], true));
		stream.append(&value);
		return;
	}

	// get length of the longest shared prefix in slice keys
	let shared_prefix = input
		.iter()
		// skip first tuple
		.skip(1)
		// get minimum number of shared nibbles between first and each successive
		.fold(key.len(), |acc, &(ref k, _)| cmp::min(shared_prefix_len(key, k.as_ref()), acc));

	// if shared prefix is higher than current prefix append its
	// new part of the key to the stream
	// then recursively append suffixes of all items who had this key
	if shared_prefix > pre_len {
		stream.begin_list(2);
		stream.append_iter(hex_prefix_encode(&key[pre_len..shared_prefix], false));
		hash256aux::<H, _, _>(input, shared_prefix, stream);
		return;
	}

	// an item for every possible nibble/suffix
	// + 1 for data
	stream.begin_list(17);

	// if first key len is equal to prefix_len, move to next element
	let mut begin = if pre_len == key.len() { 1 } else { 0 };

	// iterate over all possible nibbles
	for i in 0..16 {
		// count how many successive elements have same next nibble
		let len = input.iter().skip(begin).take_while(|pair| pair.0.as_ref()[pre_len] == i).count();

		// if at least 1 successive element has the same nibble
		// append their suffixes
		match len {
			0 => {
				stream.append_empty_data();
			}
			_ => hash256aux::<H, _, _>(&input[begin..(begin + len)], pre_len + 1, stream),
		}
		begin += len;
	}

	// if fist key len is equal prefix, append its value
	if pre_len == key.len() {
		stream.append(&value);
	} else {
		stream.append_empty_data();
	}
}

fn hash256aux<H, A, B>(input: &[(A, B)], pre_len: usize, stream: &mut RlpStream)
where
	A: AsRef<[u8]>,
	B: AsRef<[u8]>,
	H: Hasher,
{
	let mut s = RlpStream::new();
	hash256rlp::<H, _, _>(input, pre_len, &mut s);
	let out = s.out();
	match out.len() {
		0..=31 => stream.append_raw(&out, 1),
		_ => stream.append(&H::hash(&out).as_ref()),
	};
}

#[cfg(test)]
mod tests {
	use super::{hex_prefix_encode, shared_prefix_len, trie_root};
	use ethereum_types::H256;
	use hex_literal::hex;
	use keccak_hasher::KeccakHasher;

	#[test]
	fn test_hex_prefix_encode() {
		let v = vec![0, 0, 1, 2, 3, 4, 5];
		let e = vec![0x10, 0x01, 0x23, 0x45];
		let h = hex_prefix_encode(&v, false).collect::<Vec<_>>();
		assert_eq!(h, e);

		let v = vec![0, 1, 2, 3, 4, 5];
		let e = vec![0x00, 0x01, 0x23, 0x45];
		let h = hex_prefix_encode(&v, false).collect::<Vec<_>>();
		assert_eq!(h, e);

		let v = vec![0, 1, 2, 3, 4, 5];
		let e = vec![0x20, 0x01, 0x23, 0x45];
		let h = hex_prefix_encode(&v, true).collect::<Vec<_>>();
		assert_eq!(h, e);

		let v = vec![1, 2, 3, 4, 5];
		let e = vec![0x31, 0x23, 0x45];
		let h = hex_prefix_encode(&v, true).collect::<Vec<_>>();
		assert_eq!(h, e);

		let v = vec![1, 2, 3, 4];
		let e = vec![0x00, 0x12, 0x34];
		let h = hex_prefix_encode(&v, false).collect::<Vec<_>>();
		assert_eq!(h, e);

		let v = vec![4, 1];
		let e = vec![0x20, 0x41];
		let h = hex_prefix_encode(&v, true).collect::<Vec<_>>();
		assert_eq!(h, e);
	}

	#[test]
	fn simple_test() {
		assert_eq!(
			trie_root::<KeccakHasher, _, _, _>(vec![(
				b"A",
				b"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" as &[u8]
			)]),
			H256::from(hex!("d23786fb4a010da3ce639d66d5e904a11dbc02746d1ce25029e53290cabf28ab")).as_ref(),
		);
	}

	#[test]
	fn test_triehash_out_of_order() {
		assert_eq!(
			trie_root::<KeccakHasher, _, _, _>(vec![
				(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
				(vec![0x81u8, 0x23], vec![0x81u8, 0x23]),
				(vec![0xf1u8, 0x23], vec![0xf1u8, 0x23]),
			]),
			trie_root::<KeccakHasher, _, _, _>(vec![
				(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
				(vec![0xf1u8, 0x23], vec![0xf1u8, 0x23]), // last two tuples are swapped
				(vec![0x81u8, 0x23], vec![0x81u8, 0x23]),
			]),
		);
	}

	#[test]
	fn test_shared_prefix() {
		let a = vec![1, 2, 3, 4, 5, 6];
		let b = vec![4, 2, 3, 4, 5, 6];
		assert_eq!(shared_prefix_len(&a, &b), 0);
	}

	#[test]
	fn test_shared_prefix2() {
		let a = vec![1, 2, 3, 3, 5];
		let b = vec![1, 2, 3];
		assert_eq!(shared_prefix_len(&a, &b), 3);
	}

	#[test]
	fn test_shared_prefix3() {
		let a = vec![1, 2, 3, 4, 5, 6];
		let b = vec![1, 2, 3, 4, 5, 6];
		assert_eq!(shared_prefix_len(&a, &b), 6);
	}
}