1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
//! Regression analysis

use float::Float;

use bivariate::Data;

/// A straight line that passes through the origin `y = m * x`
#[derive(Clone, Copy)]
pub struct Slope<A>(pub A)
where
    A: Float;

impl<A> Slope<A>
where
    A: Float,
{
    /// Fits the data to a straight line that passes through the origin using ordinary least
    /// squares
    ///
    /// - Time: `O(length)`
    pub fn fit(data: &Data<A, A>) -> Slope<A> {
        let xs = data.0;
        let ys = data.1;

        let xy = ::dot(xs, ys);
        let x2 = ::dot(xs, xs);

        Slope(xy / x2)
    }

    /// Computes the goodness of fit (coefficient of determination) for this data set
    ///
    /// - Time: `O(length)`
    pub fn r_squared(&self, data: &Data<A, A>) -> A {
        let _0 = A::cast(0);
        let _1 = A::cast(1);
        let m = self.0;
        let xs = data.0;
        let ys = data.1;

        let n = A::cast(xs.len());
        let y_bar = ::sum(ys) / n;

        let mut ss_res = _0;
        let mut ss_tot = _0;

        for (&x, &y) in data.iter() {
            ss_res = ss_res + (y - m * x).powi(2);
            ss_tot = ss_res + (y - y_bar).powi(2);
        }

        _1 - ss_res / ss_tot
    }
}

/// A straight line `y = m * x + b`
#[derive(Clone, Copy)]
pub struct StraightLine<A>
where
    A: Float,
{
    /// The y-intercept of the line
    pub intercept: A,
    /// The slope of the line
    pub slope: A,
}

impl<A> StraightLine<A>
where
    A: Float,
{
    /// Fits the data to a straight line using ordinary least squares
    ///
    /// - Time: `O(length)`
    #[cfg_attr(feature = "cargo-clippy", allow(clippy::similar_names))]
    pub fn fit(data: Data<A, A>) -> StraightLine<A> {
        let xs = data.0;
        let ys = data.1;

        let x2 = ::dot(xs, xs);
        let xy = ::dot(xs, ys);

        let n = A::cast(xs.len());
        let x2_bar = x2 / n;
        let x_bar = ::sum(xs) / n;
        let xy_bar = xy / n;
        let y_bar = ::sum(ys) / n;

        let slope = {
            let num = xy_bar - x_bar * y_bar;
            let den = x2_bar - x_bar * x_bar;

            num / den
        };

        let intercept = y_bar - slope * x_bar;

        StraightLine { intercept, slope }
    }

    /// Computes the goodness of fit (coefficient of determination) for this data set
    ///
    /// - Time: `O(length)`
    pub fn r_squared(&self, data: Data<A, A>) -> A {
        let _0 = A::cast(0);
        let _1 = A::cast(1);
        let m = self.slope;
        let b = self.intercept;
        let xs = data.0;
        let ys = data.1;

        let n = A::cast(xs.len());
        let y_bar = ::sum(ys) / n;

        let mut ss_res = _0;
        let mut ss_tot = _0;
        for (&x, &y) in data.iter() {
            ss_res = ss_res + (y - m * x - b).powi(2);
            ss_tot = ss_tot + (y - y_bar).powi(2);
        }

        _1 - ss_res / ss_tot
    }
}

#[cfg(test)]
macro_rules! test {
    ($ty:ident) => {
        mod $ty {
            use quickcheck::TestResult;

            use bivariate::regression::StraightLine;
            use bivariate::Data;

            quickcheck! {
                fn r_squared(size: usize, start: usize, offset: usize) -> TestResult {
                    if let Some(x) = ::test::vec::<$ty>(size, start) {
                        let y = ::test::vec::<$ty>(size + offset, start + offset).unwrap();
                        let data = Data::new(&x[start..], &y[start+offset..]);

                        let sl = StraightLine::fit(data);

                        let r_squared = sl.r_squared(data);

                        TestResult::from_bool(
                            (r_squared > 0. || relative_eq!(r_squared, 0.)) &&
                                (r_squared < 1. || relative_eq!(r_squared, 1.))
                        )
                    } else {
                        TestResult::discard()
                    }
                }
            }
        }
    };
}

#[cfg(test)]
mod test {
    test!(f32);
    test!(f64);
}