1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
/*! General trait implementations for `BitVec`. The operator traits are defined in the `ops` module. !*/ use super::*; use crate::{ order::BitOrder, store::BitStore, }; use alloc::{ borrow::{ Borrow, BorrowMut, ToOwned, }, boxed::Box, vec::Vec, }; use core::{ cmp::Ordering, fmt::{ self, Binary, Debug, Display, Formatter, LowerHex, Octal, UpperHex, }, hash::{ Hash, Hasher, }, marker::PhantomData, mem, }; /// Signifies that `BitSlice` is the borrowed form of `BitVec`. impl<O, T> Borrow<BitSlice<O, T>> for BitVec<O, T> where O: BitOrder, T: BitStore { /// Borrows the `BitVec` as a `BitSlice`. /// /// # Parameters /// /// - `&self` /// /// # Returns /// /// A borrowed `BitSlice` of the vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// use std::borrow::Borrow; /// /// let bv = bitvec![0; 13]; /// let bs: &BitSlice = bv.borrow(); /// assert!(!bs[10]); /// ``` fn borrow(&self) -> &BitSlice<O, T> { self.as_bitslice() } } /// Signifies that `BitSlice` is the borrowed form of `BitVec`. impl<O, T> BorrowMut<BitSlice<O, T>> for BitVec<O, T> where O: BitOrder, T: BitStore { /// Mutably borrows the `BitVec` as a `BitSlice`. /// /// # Parameters /// /// - `&mut self` /// /// # Returns /// /// A mutably borrowed `BitSlice` of the vector. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// use std::borrow::BorrowMut; /// /// let mut bv = bitvec![0; 13]; /// let bs: &mut BitSlice = bv.borrow_mut(); /// assert!(!bs[10]); /// bs.set(10, true); /// assert!(bs[10]); /// ``` fn borrow_mut(&mut self) -> &mut BitSlice<O, T> { self.as_mut_bitslice() } } impl<O, T> Clone for BitVec<O, T> where O: BitOrder, T: BitStore { fn clone(&self) -> Self { let new_vec = self.as_slice().to_owned(); let capacity = new_vec.capacity(); let mut pointer = self.pointer; unsafe { pointer.set_pointer(new_vec.as_ptr()); } mem::forget(new_vec); Self { _order: PhantomData, pointer, // unsafe { BitPtr::new_unchecked(ptr, e, h, t) }, capacity, } } fn clone_from(&mut self, other: &Self) { let slice = other.pointer.as_slice(); self.clear(); // Copy the other data region into the underlying vector, then grab its // pointer and capacity values. let (ptr, capacity) = self.with_vec(|v| { v.copy_from_slice(slice); (v.as_ptr(), v.capacity()) }); // Copy the other `BitPtr<T>`, let mut pointer = other.pointer; // Then set it to aim at the copied pointer. unsafe { pointer.set_pointer(ptr); } // And set the new pointer/capacity. self.pointer = pointer; self.capacity = capacity; } } impl<O, T> Eq for BitVec<O, T> where O: BitOrder, T: BitStore {} impl<O, T> Ord for BitVec<O, T> where O: BitOrder, T: BitStore { fn cmp(&self, rhs: &Self) -> Ordering { self.as_bitslice().cmp(rhs.as_bitslice()) } } /** Tests if two `BitVec`s are semantically — not bitwise — equal. It is valid to compare two vectors of different order or element types. The equality condition requires that they have the same number of stored bits and that each pair of bits in semantic order are identical. **/ impl<A, B, C, D> PartialEq<BitVec<C, D>> for BitVec<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { /// Performs a comparison by `==`. /// /// # Parameters /// /// - `&self` /// - `rhs`: The other vector to compare. /// /// # Returns /// /// Whether the vectors compare equal. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let l: BitVec<Lsb0, u16> = bitvec![Lsb0, u16; 0, 1, 0, 1]; /// let r: BitVec<Msb0, u32> = bitvec![Msb0, u32; 0, 1, 0, 1]; /// assert!(l == r); /// ``` /// /// This example uses the same types to prove that raw, bitwise, values are /// not used for equality comparison. /// /// ```rust /// use bitvec::prelude::*; /// /// let l: BitVec<Msb0, u8> = bitvec![Msb0, u8; 0, 1, 0, 1]; /// let r: BitVec<Lsb0, u8> = bitvec![Lsb0, u8; 0, 1, 0, 1]; /// /// assert_eq!(l, r); /// assert_ne!(l.as_slice(), r.as_slice()); /// ``` fn eq(&self, rhs: &BitVec<C, D>) -> bool { self.as_bitslice().eq(rhs.as_bitslice()) } } impl<A, B, C, D> PartialEq<BitSlice<C, D>> for BitVec<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { fn eq(&self, rhs: &BitSlice<C, D>) -> bool { self.as_bitslice().eq(rhs) } } impl<A, B, C, D> PartialEq<BitVec<C, D>> for BitSlice<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { fn eq(&self, rhs: &BitVec<C, D>) -> bool { self.eq(rhs.as_bitslice()) } } impl<A, B, C, D> PartialEq<&BitSlice<C, D>> for BitVec<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { fn eq(&self, rhs: &&BitSlice<C, D>) -> bool { self.as_bitslice().eq(*rhs) } } // impl<A, B, C, D> PartialEq<&mut BitSlice<C, D>> for BitVec<A, B> // where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { // fn eq(&self, rhs: &&mut BitSlice<C, D>) -> bool { // self.as_bitslice().eq(*rhs) // } // } impl<A, B, C, D> PartialEq<BitVec<C, D>> for &BitSlice<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { fn eq(&self, rhs: &BitVec<C, D>) -> bool { self.eq(rhs.as_bitslice()) } } // impl<A, B, C, D> PartialEq<BitVec<C, D>> for &mut BitSlice<A, B> // where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { // fn eq(&self, rhs: &BitVec<C, D>) -> bool { // (**self).eq(rhs.as_bitslice()) // } // } /** Compares two `BitVec`s by semantic — not bitwise — ordering. The comparison sorts by testing each index for one vector to have a set bit where the other vector has an unset bit. If the vectors are different, the vector with the set bit sorts greater than the vector with the unset bit. If one of the vectors is exhausted before they differ, the longer vector is greater. **/ impl<A, B, C, D> PartialOrd<BitVec<C, D>> for BitVec<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { /// Performs a comparison by `<` or `>`. /// /// # Parameters /// /// - `&self` /// - `rhs`: The other vector to compare. /// /// # Returns /// /// The relative ordering of the two vectors. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let a = bitvec![0, 1, 0, 0]; /// let b = bitvec![0, 1, 0, 1]; /// let c = bitvec![0, 1, 0, 1, 1]; /// assert!(a < b); /// assert!(b < c); /// ``` fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering> { self.as_bitslice().partial_cmp(rhs.as_bitslice()) } } impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for BitVec<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering> { self.as_bitslice().partial_cmp(rhs) } } impl<A, B, C, D> PartialOrd<BitVec<C, D>> for BitSlice<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering> { self.partial_cmp(rhs.as_bitslice()) } } impl<A, B, C, D> PartialOrd<&BitSlice<C, D>> for BitVec<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { fn partial_cmp(&self, rhs: &&BitSlice<C, D>) -> Option<Ordering> { self.as_bitslice().partial_cmp(*rhs) } } impl<A, B, C, D> PartialOrd<BitVec<C, D>> for &BitSlice<A, B> where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering> { self.partial_cmp(rhs.as_bitslice()) } } // impl<A, B, C, D> PartialOrd<&mut BitSlice<C, D>> for BitVec<A, B> // where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { // fn partial_cmp(&self, rhs: &&mut BitSlice<C, D>) -> Option<Ordering> { // self.as_bitslice().partial_cmp(*rhs) // } // } // impl<A, B, C, D> PartialOrd<BitVec<C, D>> for &mut BitSlice<A, B> // where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore { // fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering> { // (**self).partial_cmp(rhs.as_bitslice()) // } // } impl<O, T> AsMut<BitSlice<O, T>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn as_mut(&mut self) -> &mut BitSlice<O, T> { self.as_mut_bitslice() } } /// Gives write access to all live elements in the underlying storage, including /// the partially-filled tail. impl<O, T> AsMut<[T]> for BitVec<O, T> where O: BitOrder, T: BitStore { fn as_mut(&mut self) -> &mut [T] { self.as_mut_slice() } } impl<O, T> AsRef<BitSlice<O, T>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn as_ref(&self) -> &BitSlice<O, T> { self.as_bitslice() } } /// Gives read access to all live elements in the underlying storage, including /// the partially-filled tail. impl<O, T> AsRef<[T]> for BitVec<O, T> where O: BitOrder, T: BitStore { /// Accesses the underlying store. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = bitvec![Msb0, u8; 0, 0, 0, 0, 0, 0, 0, 0, 1]; /// assert_eq!(&[0, 0b1000_0000], bv.as_slice()); /// ``` fn as_ref(&self) -> &[T] { self.as_slice() } } impl<O, T> From<&BitSlice<O, T>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn from(src: &BitSlice<O, T>) -> Self { Self::from_bitslice(src) } } /** Builds a `BitVec` out of a slice of `bool`. This is primarily for the `bitvec!` macro; it is not recommended for general use. **/ impl<O, T> From<&[bool]> for BitVec<O, T> where O: BitOrder, T: BitStore { fn from(src: &[bool]) -> Self { src.iter().cloned().collect() } } impl<O, T> From<BitBox<O, T>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn from(src: BitBox<O, T>) -> Self { Self::from_boxed_bitslice(src) } } impl<O, T> From<&[T]> for BitVec<O, T> where O: BitOrder, T: BitStore { fn from(src: &[T]) -> Self { Self::from_slice(src) } } impl<O, T> From<Box<[T]>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn from(src: Box<[T]>) -> Self { Self::from_boxed_bitslice(BitBox::from_boxed_slice(src)) } } impl<O, T> Into<Box<[T]>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn into(self) -> Box<[T]> { self.into_boxed_slice() } } /** Builds a `BitVec` out of a `Vec` of elements. This moves the memory as-is from the source buffer into the new `BitVec`. The source buffer will be unchanged by this operation, so you don't need to worry about using the correct order type. **/ impl<O, T> From<Vec<T>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn from(src: Vec<T>) -> Self { Self::from_vec(src) } } impl<O, T> Into<Vec<T>> for BitVec<O, T> where O: BitOrder, T: BitStore { fn into(self) -> Vec<T> { self.into_vec() } } impl<O, T> Default for BitVec<O, T> where O: BitOrder, T: BitStore { fn default() -> Self { Self::new() } } impl<O, T> Binary for BitVec<O, T> where O: BitOrder, T: BitStore { fn fmt(&self, fmt: &mut Formatter) -> fmt::Result { Binary::fmt(self.as_bitslice(), fmt) } } /** Prints the `BitVec` for debugging. The output is of the form `BitVec<O, T> [ELT, *]`, where `<O, T>` is the order and element type, with square brackets on each end of the bits and all the live elements in the vector printed in binary. The printout is always in semantic order, and may not reflect the underlying store. To see the underlying store, use `format!("{:?}", self.as_slice());` instead. The alternate character `{:#?}` prints each element on its own line, rather than separated by a space. **/ impl<O, T> Debug for BitVec<O, T> where O: BitOrder, T: BitStore { /// Renders the `BitVec` type header and contents for debug. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = bitvec![Lsb0, u16; /// 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1 /// ]; /// assert_eq!( /// "BitVec<Lsb0, u16> [0101000011110101]", /// &format!("{:?}", bv) /// ); /// ``` fn fmt(&self, f: &mut Formatter) -> fmt::Result { f.write_str("BitVec<")?; f.write_str(O::TYPENAME)?; f.write_str(", ")?; f.write_str(T::TYPENAME)?; f.write_str("> ")?; Display::fmt(&**self, f) } } /** Prints the `BitVec` for displaying. This prints each element in turn, formatted in binary in semantic order (so the first bit seen is printed first and the last bit seen printed last). Each element of storage is separated by a space for ease of reading. The alternate character `{:#}` prints each element on its own line. To see the in-memory representation, use `AsRef` to get access to the raw elements and print that slice instead. **/ impl<O, T> Display for BitVec<O, T> where O: BitOrder, T: BitStore { /// Renders the `BitVec` contents for display. /// /// # Examples /// /// ```rust /// use bitvec::prelude::*; /// /// let bv = bitvec![Msb0, u8; 0, 1, 0, 0, 1, 0, 1, 1, 0, 1]; /// assert_eq!("[01001011, 01]", &format!("{}", bv)); /// ``` fn fmt(&self, f: &mut Formatter) -> fmt::Result { Display::fmt(&**self, f) } } impl<O, T> LowerHex for BitVec<O, T> where O: BitOrder, T: BitStore { fn fmt(&self, fmt: &mut Formatter) -> fmt::Result { LowerHex::fmt(self.as_bitslice(), fmt) } } impl<O, T> Octal for BitVec<O, T> where O: BitOrder, T: BitStore { fn fmt(&self, fmt: &mut Formatter) -> fmt::Result { Octal::fmt(self.as_bitslice(), fmt) } } impl<O, T> UpperHex for BitVec<O, T> where O: BitOrder, T: BitStore { fn fmt(&self, fmt: &mut Formatter) -> fmt::Result { UpperHex::fmt(self.as_bitslice(), fmt) } } /// Writes the contents of the `BitVec`, in semantic bit order, into a hasher. impl<O, T> Hash for BitVec<O, T> where O: BitOrder, T: BitStore { /// Writes each bit of the `BitVec`, as a full `bool`, into the hasher. /// /// # Parameters /// /// - `&self` /// - `hasher`: The hashing pool into which the vector is written. fn hash<H: Hasher>(&self, hasher: &mut H) { <BitSlice<O, T> as Hash>::hash(self, hasher) } } /// `BitVec` is safe to move across thread boundaries, as is `&mut BitVec`. unsafe impl<O, T> Send for BitVec<O, T> where O: BitOrder, T: BitStore {} /// `&BitVec` is safe to move across thread boundaries. unsafe impl<O, T> Sync for BitVec<O, T> where O: BitOrder, T: BitStore {}