1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
mod bootstrap;
mod resamples;
pub mod regression;
use std::cmp;
use float::Float;
use num_cpus;
use thread_scoped as thread;
use bivariate::resamples::Resamples;
use tuple::{Tuple, TupledDistributionsBuilder};
use univariate::Sample;
pub struct Data<'a, X, Y>(&'a [X], &'a [Y])
where
X: 'a,
Y: 'a;
impl<'a, X, Y> Copy for Data<'a, X, Y> {}
#[cfg_attr(feature = "cargo-clippy", allow(clippy::expl_impl_clone_on_copy))]
impl<'a, X, Y> Clone for Data<'a, X, Y> {
fn clone(&self) -> Data<'a, X, Y> {
*self
}
}
impl<'a, X, Y> Data<'a, X, Y> {
pub fn len(&self) -> usize {
self.0.len()
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn iter(&self) -> Pairs<'a, X, Y> {
Pairs {
data: *self,
state: 0,
}
}
}
impl<'a, X, Y> Data<'a, X, Y>
where
X: Float,
Y: Float,
{
pub fn new(xs: &'a [X], ys: &'a [Y]) -> Data<'a, X, Y> {
assert!(
xs.len() == ys.len()
&& xs.len() > 1
&& xs.iter().all(|x| !x.is_nan())
&& ys.iter().all(|y| !y.is_nan())
);
Data(xs, ys)
}
pub fn bootstrap<T, S>(&self, nresamples: usize, statistic: S) -> T::Distributions
where
S: Fn(Data<X, Y>) -> T,
S: Sync,
T: Tuple,
T::Distributions: Send,
T::Builder: Send,
{
let ncpus = num_cpus::get();
unsafe {
if ncpus > 1 && nresamples > self.0.len() {
let granularity = nresamples / ncpus + 1;
let statistic = &statistic;
let chunks = (0..ncpus)
.map(|i| {
let mut sub_distributions: T::Builder =
TupledDistributionsBuilder::new(granularity);
let mut resamples = Resamples::new(*self);
let offset = i * granularity;
thread::scoped(move || {
for _ in offset..cmp::min(offset + granularity, nresamples) {
sub_distributions.push(statistic(resamples.next()))
}
sub_distributions
})
})
.collect::<Vec<_>>();
let mut builder: T::Builder = TupledDistributionsBuilder::new(nresamples);
for chunk in chunks {
builder.extend(&mut (chunk.join()));
}
builder.complete()
} else {
let mut distributions: T::Builder = TupledDistributionsBuilder::new(nresamples);
let mut resamples = Resamples::new(*self);
for _ in 0..nresamples {
distributions.push(statistic(resamples.next()));
}
distributions.complete()
}
}
}
pub fn x(&self) -> &'a Sample<X> {
Sample::new(&self.0)
}
pub fn y(&self) -> &'a Sample<Y> {
Sample::new(&self.1)
}
}
pub struct Pairs<'a, X: 'a, Y: 'a> {
data: Data<'a, X, Y>,
state: usize,
}
impl<'a, X, Y> Iterator for Pairs<'a, X, Y> {
type Item = (&'a X, &'a Y);
fn next(&mut self) -> Option<(&'a X, &'a Y)> {
if self.state < self.data.len() {
let i = self.state;
self.state += 1;
debug_assert!(i < self.data.0.len());
debug_assert!(i < self.data.1.len());
unsafe { Some((self.data.0.get_unchecked(i), self.data.1.get_unchecked(i))) }
} else {
None
}
}
}