1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
//! Reimplementation of the standard library’s `Vec` inherent method API.

use super::*;

use crate::{
	order::BitOrder,
	pointer::BitPtr,
	store::BitStore,
};

use alloc::{
	boxed::Box,
	vec::Vec,
};

use core::{
	cmp,
	hint::unreachable_unchecked,
	ops::RangeBounds,
	ptr::NonNull,
};

impl<O, T> BitVec<O, T>
where O: BitOrder, T: BitStore {
	/// Constructs a new, empty `BitVec<C, T>`.
	///
	/// The vector will not allocate until elements are pushed onto it.
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv: BitVec<Local, usize> = BitVec::new();
	/// ```
	#[inline]
	pub /* const */ fn new() -> Self {
		Self::with_capacity(0)
	}

	/// Constructs a new, empty `BitVec<C, T>` with the specified capacity.
	///
	/// The vector will be able to hold at least `capacity` bits without
	/// reallocating. If `capacity` is 0, the vector will not allocate.
	///
	/// It is important to note that although the returned vector has the
	/// *capacity* specified, the vector will have a zero *length*. For an
	/// explanation of the difference between length and capacity, see
	/// [*Capacity and reallocation*].
	///
	/// [*Capacity and reallocation*]: #capacity-and-reallocation
	pub fn with_capacity(capacity: usize) -> Self {
		//  Get the number of `T` elements needed to store the requested bit
		//  capacity.
		let (elts, _) = 0u8.idx::<T>().span(capacity);
		//  Allocate a buffer that can hold that many elements.
		let v = Vec::with_capacity(elts);
		let (ptr, cap) = (v.as_ptr(), v.capacity());
		//  Disarm the `Vec` destructor.
		mem::forget(v);
		Self {
			_order: PhantomData,
			pointer: BitPtr::uninhabited(ptr),
			capacity: cap,
		}
	}

	/// Returns the number of bits the vector can hold without reallocating.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let bv: BitVec<Local, usize> = BitVec::with_capacity(100);
	/// assert!(bv.capacity() >= 100);
	#[inline]
	pub fn capacity(&self) -> usize {
		self.capacity
			.checked_mul(T::BITS as usize)
			.expect("Vector capacity overflow")
	}

	/// Reserves capacity for at least `additional` more bits to be inserted in
	/// the given `BitVec<C, T>`. The collection may reserve more space to avoid
	/// frequent reallocations. After calling `reserve`, the capacity will be
	/// greater than or equal to `self.len() + additional`. Does nothing if the
	/// capacity is already sufficient.
	///
	/// # Panics
	///
	/// Panics if the new capacity overflows `BitPtr::<T>::MAX_BITS`.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1];
	/// bv.reserve(10);
	/// assert!(bv.capacity() >= 11);
	/// ```
	pub fn reserve(&mut self, additional: usize) {
		let newlen = self.len() + additional;
		assert!(
			newlen <= BitPtr::<T>::MAX_BITS,
			"Capacity overflow: {} exceeds {}",
			newlen,
			BitPtr::<T>::MAX_BITS,
		);
		let (total_elts, _) = self.pointer.head().span(newlen);
		if let Some(extra) = total_elts.checked_sub(self.pointer.elements()) {
			self.with_vec(|v| v.reserve(extra));
		}
	}

	/// Reserves the minimum capacity for exactly `additional` more bits to be
	/// inserted in the given `BitVec<C, T>`. After calling `reserve_exact`,
	/// capacity will be greater than or equal to `self.len() + additional`.
	/// Does nothing if the capacity is already sufficient.
	///
	/// Note that the allocator may give the collection more space than it
	/// requests. Therefore, capacity can not be relied upon to be precisely
	/// minimal. Prefer `reserve` if future insertions are expected.
	///
	/// # Panics
	///
	/// Panics if the new capacity overflows `BitPtr::<T>::MAX_BITS`.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1];
	/// bv.reserve_exact(10);
	/// assert!(bv.capacity() >= 11);
	/// ```
	pub fn reserve_exact(&mut self, additional: usize) {
		let newlen = self.len() + additional;
		assert!(
			newlen <= BitPtr::<T>::MAX_BITS,
			"Capacity overflow: {} exceeds {}",
			newlen,
			BitPtr::<T>::MAX_BITS,
		);
		let (total_elts, _) = self.pointer.head().span(newlen);
		let extra = total_elts - self.capacity;
		self.with_vec(|v| v.reserve_exact(extra));
	}

	/// Shrinks the capacity of the vector as much as possible.
	///
	/// It will drop down as close as possible to the length but the allocator
	/// may still inform the vector that there is space for a few more elements.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv: BitVec<Local, usize> = BitVec::with_capacity(10);
	/// bv.extend([true, false, true].iter().copied());
	/// assert!(bv.capacity() >= 10);
	/// bv.shrink_to_fit();
	/// assert!(bv.capacity() >= 3);
	/// ```
	#[inline]
	pub fn shrink_to_fit(&mut self) {
		self.with_vec(Vec::shrink_to_fit);
	}

	/// Converts the bit-vector into [`Box<[T]>`].
	///
	/// Note that this will drop any excess capacity.
	///
	/// For the vec-to-box equivalent that produces a [`BitBox<C, T>`], see
	/// [`into_boxed_bitslice`].
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let bv = bitvec![1, 0, 1];
	///
	/// let slice = bv.into_boxed_slice();
	/// ```
	///
	/// Any excess capacity is removed:
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = BitVec::<Local, usize>::with_capacity(100);
	/// bv.extend([true, false, true].iter().copied());
	///
	/// assert!(bv.capacity() >= 100);
	/// let slice = bv.into_boxed_slice();
	/// let boxed_bitslice = BitBox::<Local, usize>::from_boxed_slice(slice);
	/// let bv = BitVec::from_boxed_bitslice(boxed_bitslice);
	/// assert!(bv.capacity() >= 3);
	/// ```
	///
	/// [`BitBox<C, T>`]: ../boxed/struct.BitBox.html
	/// [`Box<[T]>`]: https://doc.rust-lang.org/std/boxed/struct.Box.html
	/// [`into_boxed_bitslice`]: #method.into_boxed_bitslice
	#[inline]
	pub fn into_boxed_slice(self) -> Box<[T]> {
		self.into_vec().into_boxed_slice()
	}

	/// Shortens the vector, keeping the first `len` bits and dropping the rest.
	///
	/// If `len` is greater than the vector’s current length, this has no
	/// effect.
	///
	/// The [`drain`] method can emulate `truncate`, but causes the excess bits
	/// to be returned instead of dropped.
	///
	/// Note that this method has no effect on the allocated capacity of the
	/// vector.
	///
	/// # Examples
	///
	/// Truncating a five-bit vector to two bits:
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1, 0, 1, 0, 1];
	/// bv.truncate(2);
	/// assert_eq!(bv, bitvec![1, 0]);
	/// ```
	///
	/// No truncation occurs when `len` is greater than the vector’s current
	/// length:
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1; 5];
	/// bv.truncate(10);
	/// assert_eq!(bv, bitvec![1; 5]);
	/// ```
	///
	/// Truncating to zero is equivalent to calling the [`clear`] method.
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![0; 5];
	/// bv.truncate(0);
	/// assert!(bv.is_empty());
	/// ```
	#[inline]
	pub fn truncate(&mut self, len: usize) {
		if len < self.len() {
			unsafe { self.set_len(len) }
		}
	}

	/// Extracts an element slice containing the entire vector.
	///
	/// Unlike [`BitSlice::as_slice`], this will produce partial edge elements,
	/// as they are known to not be aliased by any other slice handles.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// # #[cfg(feature = "std")] {
	/// use std::io::{self, Write};
	/// let buffer = bitvec![Local, u8; 1, 0, 1, 0, 1];
	/// io::sink().write(buffer.as_slice()).unwrap();
	/// # }
	/// ```
	///
	/// [`BitSlice::as_slice`]: ../slice/struct.BitSlice.html#method.as_slice
	#[inline]
	pub fn as_slice(&self) -> &[T] {
		self.pointer.as_slice()
	}

	/// Extracts a mutable slice of the entire vector.
	///
	/// Unlike [`BitSlice::as_mut_slice`], this will produce partial edge
	/// elements, as they are known to not be aliased by any other slice
	/// handles.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// # #[cfg(feature = "std")] {
	/// use std::io::{self, Read};
	/// let mut buffer = bitvec![Local, u8; 0; 24];
	/// io::repeat(0xA5u8).read_exact(buffer.as_mut_slice()).unwrap();
	/// # }
	/// ```
	///
	/// [`BitSlice::as_mut_slice`]: ../slice/struct.BitSlice.html#method.as_mut_slice
	#[inline]
	pub fn as_mut_slice(&mut self) -> &mut [T] {
		self.pointer.as_mut_slice()
	}

	/// Forces the length of the vector to `new_len`.
	///
	/// This is a low-level operation that maintains none of the normal
	/// invariants of the type. Normally changing the length of a vector is done
	/// using one of the safe operations instead, such as [`truncate`],
	/// [`resize`], [`extend`], or [`clear`].
	///
	/// # Safety
	///
	/// - `new_len` must be less than or equal to [`capacity()`].
	/// - The underlying elements at `old_len ..new_len` must be initialized.
	///
	/// # Examples
	///
	/// This method can be useful for situations in which the vector is serving
	/// as a buffer for other code, particularly over FFI.
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = BitVec::<Local, usize>::with_capacity(17);
	/// assert!(bv.is_empty());
	/// unsafe { bv.set_len(23) };
	/// assert_eq!(bv.len(), 23);
	/// ```
	///
	/// This example executes correctly, because the allocator can only reserve
	/// even multiples of bytes, and so rounds up from the `with_capacity`
	/// argument.
	pub unsafe fn set_len(&mut self, new_len: usize) {
		assert!(
			new_len <= BitPtr::<T>::MAX_BITS,
			"Capacity overflow: {} overflows maximum length {}",
			new_len,
			BitPtr::<T>::MAX_BITS,
		);
		let cap = self.capacity();
		assert!(
			new_len <= cap,
			"Capacity overflow: {} overflows allocation size {}",
			new_len,
			cap,
		);
		self.pointer.set_len(new_len);
	}

	/// Removes a bit from the vector and returns it.
	///
	/// The removed bit is replaced by the last bit of the vector.
	///
	/// This does not preserve ordering, but is O(1).
	///
	/// # Panics
	///
	/// Panics if `index` is out of bounds.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1, 0, 1, 0, 1];
	///
	/// assert!(!bv.swap_remove(1));
	/// assert_eq!(bv, bitvec![1, 1, 1, 0]);
	///
	/// assert!(bv.swap_remove(0));
	/// assert_eq!(bv, bitvec![0, 1, 1]);
	/// ```
	pub fn swap_remove(&mut self, index: usize) -> bool {
		let len = self.len();
		assert!(len != 0, "Empty vectors cannot remove");
		assert!(index < len, "Index {} out of bounds: {}", index, len);
		self.swap(index, len - 1);
		self.pop().unwrap_or_else(|| unsafe { unreachable_unchecked() })
	}

	/// Inserts a bit at position `index` within the vector, shifting all bits
	/// after it to the right.
	///
	/// # Panics
	///
	/// Panics if `index > len`.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1, 0, 1, 0, 1];
	/// bv.insert(1, false);
	/// assert_eq!(bv, bitvec![1, 0, 0, 1, 0, 1]);
	/// bv.insert(4, true);
	/// assert_eq!(bv, bitvec![1, 0, 0, 1, 1, 0, 1]);
	/// ```
	pub fn insert(&mut self, index: usize, value: bool) {
		let len = self.len();
		assert!(index <= len, "Index {} is out of bounds: {}", index, len);
		self.push(value);
		unsafe { self.get_unchecked_mut(index ..) }.rotate_right(1);
	}

	/// Removes and returns the bit at position `index` within the vector,
	/// shifting all bits after it to the left.
	///
	/// # Panics
	///
	/// Panics if `index` is out of bounds.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1, 0, 1, 0, 1];
	/// assert!(!bv.remove(1));
	/// assert_eq!(bv, bitvec![1, 1, 0, 1]);
	/// ```
	pub fn remove(&mut self, index: usize) -> bool {
		let len = self.len();
		assert!(len != 0, "Empty vectors cannot remove");
		assert!(index < len, "Index {} is out of bounds: {}", index, len);
		unsafe {
			self.get_unchecked_mut(index ..).rotate_left(1);
			self.pop().unwrap_or_else(|| unreachable_unchecked())
		}
	}

	/// Retains only the bits that pass the predicate.
	///
	/// This removes all bits `b` where `f(e)` returns `false`. This method
	/// operates in place and preserves the order of the retained bits. Because
	/// it is in-place, it operates in `O(n²)` time.
	///
	/// # API Differences
	///
	/// The [`Vec::retain`] method takes a predicate function with signature
	/// `(&T) -> bool`, whereas this method’s predicate function has signature
	/// `(usize, &T) -> bool`. This difference is in place because `BitSlice` by
	/// definition has only one bit of information per slice item, and including
	/// the index allows the callback function to make more informed choices.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![0, 1, 0, 1, 0, 1];
	/// bv.retain(|_, b| b);
	/// assert_eq!(bv, bitvec![1, 1, 1]);
	/// ```
	///
	/// [`BitSlice::for_each`]: ../slice/struct.BitSlice.html#method.for_each
	pub fn retain<F>(&mut self, mut pred: F)
	where F: FnMut(usize, bool) -> bool {
		for n in (0 .. self.len()).rev() {
			if !pred(n, self[n]) {
				self.remove(n);
			}
		}
	}

	/// Appends a bit to the back of the vector.
	///
	/// If the vector is at capacity, this may cause a reallocation.
	///
	/// # Panics
	///
	/// This will panic if the push will cause the vector to allocate above
	/// `BitPtr<T>::MAX_ELTS` or machine capacity.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv: BitVec = BitVec::new();
	/// assert!(bv.is_empty());
	/// bv.push(true);
	/// assert_eq!(bv.len(), 1);
	/// assert!(bv[0]);
	/// ```
	pub fn push(&mut self, value: bool) {
		let len = self.len();
		assert!(
			len <= BitPtr::<T>::MAX_BITS,
			"Capacity overflow: {} >= {}",
			len,
			BitPtr::<T>::MAX_BITS,
		);
		//  If self is empty *or* tail is at the back edge of an element, push
		//  an element onto the vector.
		if self.is_empty() || *self.pointer.tail() == T::BITS {
			self.with_vec(|v| v.push(T::FALSE));
		}
		//  At this point, it is always safe to increment the tail, and then
		//  write to the newly live bit.
		unsafe {
			self.pointer.set_len(len + 1);
			self.set_unchecked(len, value);
		}
	}

	/// Removes the last element from a vector and returns it, or `None` if it
	/// is empty.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv: BitVec = BitVec::new();
	/// assert!(bv.is_empty());
	/// bv.push(true);
	/// assert_eq!(bv.len(), 1);
	/// assert!(bv[0]);
	///
	/// assert!(bv.pop().unwrap());
	/// assert!(bv.is_empty());
	/// assert!(bv.pop().is_none());
	/// ```
	pub fn pop(&mut self) -> Option<bool> {
		self.len().checked_sub(1).map(|new_len| unsafe {
			let out = *self.get_unchecked(new_len);
			self.set_len(new_len);
			out
		})
	}

	/// Moves all the elements of `other` into `self`, leaving `other` empty.
	///
	/// # Panics
	///
	/// Panics if the number of bits in the vector overflows
	/// `BitPtr::<T>::MAX_ELTS`.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv1 = bitvec![0; 10];
	/// let mut bv2 = bitvec![1; 10];
	/// bv1.append(&mut bv2);
	/// assert_eq!(bv1.len(), 20);
	/// assert!(bv1[10]);
	/// assert!(bv2.is_empty());
	/// ```
	#[inline]
	pub fn append<D, U>(&mut self, other: &mut BitVec<D, U>)
	where D: BitOrder, U: BitStore {
		self.extend(other.iter().copied());
		other.clear();
	}

	/// Creates a draining iterator that removes the specified range from the
	/// vector and yields the removed bits.
	///
	/// # Notes
	///
	/// 1. The element range is removed even if the iterator is only partially
	///    consumed or not consumed at all.
	/// 2. It is unspecified how many bits are removed from the vector if the
	///    `Drain` value is leaked.
	///
	/// # Panics
	///
	/// Panics if the starting point is greater than the end point or if the end
	/// point is greater than the length of the vector.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![0, 0, 1, 1, 1, 0, 0];
	/// assert_eq!(bv.len(), 7);
	/// for bit in bv.drain(2 .. 5) {
	///   assert!(bit);
	/// }
	/// assert!(bv.not_any());
	/// assert_eq!(bv.len(), 4);
	/// ```
	pub fn drain<R>(&mut self, range: R) -> Drain<O, T>
	where R: RangeBounds<usize> {
		use core::ops::Bound::*;
		let len = self.len();
		let from = match range.start_bound() {
			Included(&n) => n,
			Excluded(&n) => n + 1,
			Unbounded    => 0,
		};
		//  First index beyond the end of the drain.
		let upto = match range.end_bound() {
			Included(&n) => n + 1,
			Excluded(&n) => n,
			Unbounded    => len,
		};
		assert!(from <= upto, "The drain start must be below the drain end");
		assert!(upto <= len, "The drain end must be within the vector bounds");

		unsafe {
			let ranging: &BitSlice<O, T> = self.as_bitslice()[from..upto]
				//  remove the lifetime and borrow awareness
				.bitptr()
				.into_bitslice();
			self.set_len(from);

			Drain {
				bitvec: NonNull::from(self),
				iter: ranging.iter(),
				tail_start: upto,
				tail_len: len - upto,
			}
		}
	}

	/// Clears the vector, removing all values.
	///
	/// Note that this method has no effect on the allocated capacity of the
	/// vector.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1; 30];
	/// assert_eq!(bv.len(), 30);
	/// assert!(bv.iter().all(|b| *b));
	/// bv.clear();
	/// assert!(bv.is_empty());
	/// ```
	///
	/// After calling `clear()`, `bv` will no longer show raw memory, so the
	/// above test cannot show that the underlying memory is not altered. This
	/// is also an implementation detail on which you should not rely.
	pub fn clear(&mut self) {
		unsafe { self.set_len(0) }
	}

	/// Splits the collection into two at the given index.
	///
	/// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
	/// and the returned `Self` contains elements `[at, len)`.
	///
	/// Note that the capacity of `self` does not change.
	///
	/// # Panics
	///
	/// Panics if `at > len`.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv1 = bitvec![0, 0, 0, 1, 1, 1];
	/// let bv2 = bv1.split_off(3);
	/// assert_eq!(bv1, bitvec![0, 0, 0]);
	/// assert_eq!(bv2, bitvec![1, 1, 1]);
	/// ```
	pub fn split_off(&mut self, at: usize) -> Self {
		let len = self.len();
		assert!(at <= len, "Index out of bounds: {} is beyond {}", at, len);
		match at {
			0 => mem::replace(self, Self::new()),
			n if n == len => Self::new(),
			_ => {
				let out = self[at ..].to_owned();
				self.truncate(at);
				out
			},
		}
	}

	/// Resizes the `BitVec` in-place so that `len` is equal to `new_len`.
	///
	/// If `new_len` is greater than `len`, the `BitVec` is extended by the
	/// difference, with each additional slot filled with the result of calling
	/// the closure `f`. The return values from `f` will end up in the `BitVec`
	/// in the order they have been generated.
	///
	/// If `new_len` is less than `len`, the `BitVec` is simply truncated.
	///
	/// This method uses a closure to create new values on every push. If you’d
	/// rather [`Clone`] a given value, use [`resize`]. If you want to use the
	/// [`Default`] trait to generate values, you can pass
	/// [`Default::default()`] as the second argument.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1, 0, 1];
	/// bv.resize_with(5, Default::default);
	/// assert_eq!(bv, bitvec![1, 0, 1, 0, 0]);
	///
	/// let mut bv = bitvec![];
	/// let mut p = 1;
	/// bv.resize_with(4, || { p += 1; p % 2 == 0});
	/// assert_eq!(bv, bitvec![1, 0, 1, 0]);
	/// ```
	///
	/// [`Clone`]: https://doc.rust-lang.org/std/clone/trait.Clone.html
	/// [`Default`]: https://doc.rust-lang.org/std/default/trait.Default.html
	/// [`Default::default()`]: https://doc.rust-lang.org/std/default/trait.Default.html#tymethod.default
	/// [`resize`]: #method.resize
	pub fn resize_with<F>(&mut self, new_len: usize, mut f: F)
	where F: FnMut() -> bool {
		let len = self.len();
		match new_len.cmp(&len) {
			cmp::Ordering::Less => self.truncate(new_len),
			cmp::Ordering::Greater => {
				let diff = new_len - len;
				self.reserve(diff);
				for _ in 0 .. (new_len - len) {
					self.push(f());
				}
			},
			cmp::Ordering::Equal => {},
		}
	}

	/// Resizes the `BitVec` in place so that `len` is equal to `new_len`.
	///
	/// If `new_len` is greater than `len`, the `BitVec` is extended by the
	/// difference, with each additional slot filled with `value`. If `new_len`
	/// is less than `len`, the `BitVec` is simply truncated.
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![0; 4];
	/// bv.resize(8, true);
	/// assert_eq!(bv, bitvec![0, 0, 0, 0, 1, 1, 1, 1]);
	/// bv.resize(5, false);
	/// assert_eq!(bv, bitvec![0, 0, 0, 0, 1]);
	/// ```
	pub fn resize(&mut self, new_len: usize, value: bool) {
		let len = self.len();
		match new_len.cmp(&len) {
			cmp::Ordering::Less => self.truncate(new_len),
			cmp::Ordering::Greater => {
				let diff = new_len - len;
				self.reserve(diff);
				unsafe { self.set_len(new_len); }
				self[len ..].set_all(value);
			},
			cmp::Ordering::Equal => {},
		}
	}

	/// Clones and appends all bits in a bit-slice to the `BitVec`.
	///
	/// Iterates over the bit-slice `other`, clones each bit, and then appends
	/// it to this `BitVec`. The `other` slice is traversed in-order.
	///
	/// Note that this function is the same as [`extend`] except that it is
	/// specialized to work with bit-slices instead. If and when Rust gets
	/// specialization this function will likely be deprecated (but still
	/// available).
	///
	/// # Examples
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![1];
	/// bv.extend_from_slice(0xA5u8.bits::<Lsb0>());
	/// assert_eq!(bv, bitvec![1, 1, 0, 1, 0, 0, 1, 0, 1]);
	/// ```
	///
	/// [`extend`]: #method.extend
	pub fn extend_from_slice<D, U>(&mut self, other: &BitSlice<D, U>)
	where D: BitOrder, U: BitStore {
		let len = self.len();
		let olen = other.len();
		self.reserve(olen);
		unsafe { self.set_len(len + olen); }
		self[len ..].clone_from_slice(other)
	}

	/// Creates a splicing iterator that replaces the specified range in the
	/// vector with the given `replace_with` iterator and yields the removed
	/// bits. `replace_with` does not need to be the same length as `range`.
	///
	/// # Notes
	///
	/// 1. The element range is removed and replaced even if the iterator
	///    produced by this method is not consumed until the end.
	/// 2. It is unspecified how many bits are removed from the vector if the
	///    `Splice` value is leaked.
	/// 3. The input iterator `replace_with` is only consumed when the `Splice`
	///    value is dropped.
	/// 4. This is optimal if:
	///    - the tail (elements in the vector after `range`) is empty,
	///    - or `replace_with` yields fewer bits than `range`’s length,
	///    - the lower bound of its `size_hint()` is exact.
	///
	///    Otherwise, a temporary vector is allocated and the tail is moved
	///    twice.
	///
	/// # Panics
	///
	/// Panics if the starting point is greater than the end point or if the end
	/// point is greater than the length of the vector.
	///
	/// # Examples
	///
	/// This example starts with six bits of zero, and then splices out bits 2
	/// and 3 and replaces them with four bits of one.
	///
	/// ```rust
	/// # use bitvec::prelude::*;
	/// let mut bv = bitvec![0; 6];
	/// let bv2 = bitvec![1; 4];
	///
	/// let s = bv.splice(2 .. 4, bv2).collect::<BitVec>();
	/// assert_eq!(s.len(), 2);
	/// assert!(!s[0]);
	/// assert_eq!(bv, bitvec![0, 0, 1, 1, 1, 1, 0, 0]);
	/// ```
	pub fn splice<R, I>(
		&mut self,
		range: R,
		replace_with: I,
	) -> Splice<O, T, <I as IntoIterator>::IntoIter>
	where I: IntoIterator<Item=bool>, R: RangeBounds<usize> {
		Splice {
			drain: self.drain(range),
			splice: replace_with.into_iter(),
		}
	}
}