1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
use solana_sdk::hash::{hashv, Hash};

// We need to discern between leaf and intermediate nodes to prevent trivial second
// pre-image attacks.
// https://flawed.net.nz/2018/02/21/attacking-merkle-trees-with-a-second-preimage-attack
const LEAF_PREFIX: &[u8] = &[0];
const INTERMEDIATE_PREFIX: &[u8] = &[1];

macro_rules! hash_leaf {
    {$d:ident} => {
        hashv(&[LEAF_PREFIX, $d])
    }
}

macro_rules! hash_intermediate {
    {$l:ident, $r:ident} => {
        hashv(&[INTERMEDIATE_PREFIX, $l.as_ref(), $r.as_ref()])
    }
}

#[derive(Debug)]
pub struct MerkleTree {
    leaf_count: usize,
    nodes: Vec<Hash>,
}

#[derive(Debug, PartialEq)]
pub struct ProofEntry<'a>(&'a Hash, Option<&'a Hash>, Option<&'a Hash>);

impl<'a> ProofEntry<'a> {
    pub fn new(
        target: &'a Hash,
        left_sibling: Option<&'a Hash>,
        right_sibling: Option<&'a Hash>,
    ) -> Self {
        assert!((None == left_sibling) ^ (None == right_sibling));
        Self(target, left_sibling, right_sibling)
    }
}

#[derive(Debug, Default, PartialEq)]
pub struct Proof<'a>(Vec<ProofEntry<'a>>);

impl<'a> Proof<'a> {
    pub fn push(&mut self, entry: ProofEntry<'a>) {
        self.0.push(entry)
    }

    pub fn verify(&self, candidate: Hash) -> bool {
        let result = self.0.iter().try_fold(candidate, |candidate, pe| {
            let lsib = pe.1.unwrap_or(&candidate);
            let rsib = pe.2.unwrap_or(&candidate);
            let hash = hash_intermediate!(lsib, rsib);

            if hash == *pe.0 {
                Some(hash)
            } else {
                None
            }
        });
        matches!(result, Some(_))
    }
}

impl MerkleTree {
    #[inline]
    fn next_level_len(level_len: usize) -> usize {
        if level_len == 1 {
            0
        } else {
            (level_len + 1) / 2
        }
    }

    fn calculate_vec_capacity(leaf_count: usize) -> usize {
        // the most nodes consuming case is when n-1 is full balanced binary tree
        // then n will cause the previous tree add a left only path to the root
        // this cause the total nodes number increased by tree height, we use this
        // condition as the max nodes consuming case.
        // n is current leaf nodes number
        // assuming n-1 is a full balanced binary tree, n-1 tree nodes number will be
        // 2(n-1) - 1, n tree height is closed to log2(n) + 1
        // so the max nodes number is 2(n-1) - 1 + log2(n) + 1, finally we can use
        // 2n + log2(n+1) as a safe capacity value.
        // test results:
        // 8192 leaf nodes(full balanced):
        // computed cap is 16398, actually using is 16383
        // 8193 leaf nodes:(full balanced plus 1 leaf):
        // computed cap is 16400, actually using is 16398
        // about performance: current used fast_math log2 code is constant algo time
        if leaf_count > 0 {
            fast_math::log2_raw(leaf_count as f32) as usize + 2 * leaf_count + 1
        } else {
            0
        }
    }

    pub fn new<T: AsRef<[u8]>>(items: &[T]) -> Self {
        let cap = MerkleTree::calculate_vec_capacity(items.len());
        let mut mt = MerkleTree {
            leaf_count: items.len(),
            nodes: Vec::with_capacity(cap),
        };

        for item in items {
            let item = item.as_ref();
            let hash = hash_leaf!(item);
            mt.nodes.push(hash);
        }

        let mut level_len = MerkleTree::next_level_len(items.len());
        let mut level_start = items.len();
        let mut prev_level_len = items.len();
        let mut prev_level_start = 0;
        while level_len > 0 {
            for i in 0..level_len {
                let prev_level_idx = 2 * i;
                let lsib = &mt.nodes[prev_level_start + prev_level_idx];
                let rsib = if prev_level_idx + 1 < prev_level_len {
                    &mt.nodes[prev_level_start + prev_level_idx + 1]
                } else {
                    // Duplicate last entry if the level length is odd
                    &mt.nodes[prev_level_start + prev_level_idx]
                };

                let hash = hash_intermediate!(lsib, rsib);
                mt.nodes.push(hash);
            }
            prev_level_start = level_start;
            prev_level_len = level_len;
            level_start += level_len;
            level_len = MerkleTree::next_level_len(level_len);
        }

        mt
    }

    pub fn get_root(&self) -> Option<&Hash> {
        self.nodes.iter().last()
    }

    pub fn find_path(&self, index: usize) -> Option<Proof> {
        if index >= self.leaf_count {
            return None;
        }

        let mut level_len = self.leaf_count;
        let mut level_start = 0;
        let mut path = Proof::default();
        let mut node_index = index;
        let mut lsib = None;
        let mut rsib = None;
        while level_len > 0 {
            let level = &self.nodes[level_start..(level_start + level_len)];

            let target = &level[node_index];
            if lsib != None || rsib != None {
                path.push(ProofEntry::new(target, lsib, rsib));
            }
            if node_index % 2 == 0 {
                lsib = None;
                rsib = if node_index + 1 < level.len() {
                    Some(&level[node_index + 1])
                } else {
                    Some(&level[node_index])
                };
            } else {
                lsib = Some(&level[node_index - 1]);
                rsib = None;
            }
            node_index /= 2;

            level_start += level_len;
            level_len = MerkleTree::next_level_len(level_len);
        }
        Some(path)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    const TEST: &[&[u8]] = &[
        b"my", b"very", b"eager", b"mother", b"just", b"served", b"us", b"nine", b"pizzas",
        b"make", b"prime",
    ];
    const BAD: &[&[u8]] = &[b"bad", b"missing", b"false"];

    #[test]
    fn test_tree_from_empty() {
        let mt = MerkleTree::new::<[u8; 0]>(&[]);
        assert_eq!(mt.get_root(), None);
    }

    #[test]
    fn test_tree_from_one() {
        let input = b"test";
        let mt = MerkleTree::new(&[input]);
        let expected = hash_leaf!(input);
        assert_eq!(mt.get_root(), Some(&expected));
    }

    #[test]
    fn test_tree_from_many() {
        let mt = MerkleTree::new(TEST);
        // This golden hash will need to be updated whenever the contents of `TEST` change in any
        // way, including addition, removal and reordering or any of the tree calculation algo
        // changes
        let bytes = hex::decode("b40c847546fdceea166f927fc46c5ca33c3638236a36275c1346d3dffb84e1bc")
            .unwrap();
        let expected = Hash::new(&bytes);
        assert_eq!(mt.get_root(), Some(&expected));
    }

    #[test]
    fn test_path_creation() {
        let mt = MerkleTree::new(TEST);
        for (i, _s) in TEST.iter().enumerate() {
            let _path = mt.find_path(i).unwrap();
        }
    }

    #[test]
    fn test_path_creation_bad_index() {
        let mt = MerkleTree::new(TEST);
        assert_eq!(mt.find_path(TEST.len()), None);
    }

    #[test]
    fn test_path_verify_good() {
        let mt = MerkleTree::new(TEST);
        for (i, s) in TEST.iter().enumerate() {
            let hash = hash_leaf!(s);
            let path = mt.find_path(i).unwrap();
            assert!(path.verify(hash));
        }
    }

    #[test]
    fn test_path_verify_bad() {
        let mt = MerkleTree::new(TEST);
        for (i, s) in BAD.iter().enumerate() {
            let hash = hash_leaf!(s);
            let path = mt.find_path(i).unwrap();
            assert!(!path.verify(hash));
        }
    }

    #[test]
    fn test_proof_entry_instantiation_lsib_set() {
        ProofEntry::new(&Hash::default(), Some(&Hash::default()), None);
    }

    #[test]
    fn test_proof_entry_instantiation_rsib_set() {
        ProofEntry::new(&Hash::default(), None, Some(&Hash::default()));
    }

    #[test]
    fn test_nodes_capacity_compute() {
        let iteration_count = |mut leaf_count: usize| -> usize {
            let mut capacity = 0;
            while leaf_count > 0 {
                capacity += leaf_count;
                leaf_count = MerkleTree::next_level_len(leaf_count);
            }
            capacity
        };

        // test max 64k leaf nodes compute
        for leaf_count in 0..65536 {
            let math_count = MerkleTree::calculate_vec_capacity(leaf_count);
            let iter_count = iteration_count(leaf_count);
            assert!(math_count >= iter_count);
        }
    }

    #[test]
    #[should_panic]
    fn test_proof_entry_instantiation_both_clear() {
        ProofEntry::new(&Hash::default(), None, None);
    }

    #[test]
    #[should_panic]
    fn test_proof_entry_instantiation_both_set() {
        ProofEntry::new(
            &Hash::default(),
            Some(&Hash::default()),
            Some(&Hash::default()),
        );
    }
}