Module borsh::maybestd::collections 1.0.0[−][src]
Collection types.
Rust’s standard collection library provides efficient implementations of the most common general purpose programming data structures. By using the standard implementations, it should be possible for two libraries to communicate without significant data conversion.
To get this out of the way: you should probably just use Vec
or HashMap
.
These two collections cover most use cases for generic data storage and
processing. They are exceptionally good at doing what they do. All the other
collections in the standard library have specific use cases where they are
the optimal choice, but these cases are borderline niche in comparison.
Even when Vec
and HashMap
are technically suboptimal, they’re probably a
good enough choice to get started.
Rust’s collections can be grouped into four major categories:
- Sequences:
Vec
,VecDeque
,LinkedList
- Maps:
HashMap
,BTreeMap
- Sets:
HashSet
,BTreeSet
- Misc:
BinaryHeap
When Should You Use Which Collection?
These are fairly high-level and quick break-downs of when each collection should be considered. Detailed discussions of strengths and weaknesses of individual collections can be found on their own documentation pages.
Use a Vec
when:
- You want to collect items up to be processed or sent elsewhere later, and don’t care about any properties of the actual values being stored.
- You want a sequence of elements in a particular order, and will only be appending to (or near) the end.
- You want a stack.
- You want a resizable array.
- You want a heap-allocated array.
Use a VecDeque
when:
- You want a
Vec
that supports efficient insertion at both ends of the sequence. - You want a queue.
- You want a double-ended queue (deque).
Use a LinkedList
when:
- You want a
Vec
orVecDeque
of unknown size, and can’t tolerate amortization. - You want to efficiently split and append lists.
- You are absolutely certain you really, truly, want a doubly linked list.
Use a HashMap
when:
- You want to associate arbitrary keys with an arbitrary value.
- You want a cache.
- You want a map, with no extra functionality.
Use a BTreeMap
when:
- You want a map sorted by its keys.
- You want to be able to get a range of entries on-demand.
- You’re interested in what the smallest or largest key-value pair is.
- You want to find the largest or smallest key that is smaller or larger than something.
Use the Set
variant of any of these Map
s when:
- You just want to remember which keys you’ve seen.
- There is no meaningful value to associate with your keys.
- You just want a set.
Use a BinaryHeap
when:
- You want to store a bunch of elements, but only ever want to process the “biggest” or “most important” one at any given time.
- You want a priority queue.
Performance
Choosing the right collection for the job requires an understanding of what each collection is good at. Here we briefly summarize the performance of different collections for certain important operations. For further details, see each type’s documentation, and note that the names of actual methods may differ from the tables below on certain collections.
Throughout the documentation, we will follow a few conventions. For all
operations, the collection’s size is denoted by n. If another collection is
involved in the operation, it contains m elements. Operations which have an
amortized cost are suffixed with a *
. Operations with an expected
cost are suffixed with a ~
.
All amortized costs are for the potential need to resize when capacity is exhausted. If a resize occurs it will take O(n) time. Our collections never automatically shrink, so removal operations aren’t amortized. Over a sufficiently large series of operations, the average cost per operation will deterministically equal the given cost.
Only HashMap
has expected costs, due to the probabilistic nature of hashing.
It is theoretically possible, though very unlikely, for HashMap
to
experience worse performance.
Sequences
get(i) | insert(i) | remove(i) | append | split_off(i) | |
---|---|---|---|---|---|
Vec | O(1) | O(n-i)* | O(n-i) | O(m)* | O(n-i) |
VecDeque | O(1) | O(min(i, n-i))* | O(min(i, n-i)) | O(m)* | O(min(i, n-i)) |
LinkedList | O(min(i, n-i)) | O(min(i, n-i)) | O(min(i, n-i)) | O(1) | O(min(i, n-i)) |
Note that where ties occur, Vec
is generally going to be faster than VecDeque
, and
VecDeque
is generally going to be faster than LinkedList
.
Maps
For Sets, all operations have the cost of the equivalent Map operation.
get | insert | remove | range | append | |
---|---|---|---|---|---|
HashMap | O(1)~ | O(1)~* | O(1)~ | N/A | N/A |
BTreeMap | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(n+m) |
Correct and Efficient Usage of Collections
Of course, knowing which collection is the right one for the job doesn’t instantly permit you to use it correctly. Here are some quick tips for efficient and correct usage of the standard collections in general. If you’re interested in how to use a specific collection in particular, consult its documentation for detailed discussion and code examples.
Capacity Management
Many collections provide several constructors and methods that refer to “capacity”. These collections are generally built on top of an array. Optimally, this array would be exactly the right size to fit only the elements stored in the collection, but for the collection to do this would be very inefficient. If the backing array was exactly the right size at all times, then every time an element is inserted, the collection would have to grow the array to fit it. Due to the way memory is allocated and managed on most computers, this would almost surely require allocating an entirely new array and copying every single element from the old one into the new one. Hopefully you can see that this wouldn’t be very efficient to do on every operation.
Most collections therefore use an amortized allocation strategy. They generally let themselves have a fair amount of unoccupied space so that they only have to grow on occasion. When they do grow, they allocate a substantially larger array to move the elements into so that it will take a while for another grow to be required. While this strategy is great in general, it would be even better if the collection never had to resize its backing array. Unfortunately, the collection itself doesn’t have enough information to do this itself. Therefore, it is up to us programmers to give it hints.
Any with_capacity
constructor will instruct the collection to allocate
enough space for the specified number of elements. Ideally this will be for
exactly that many elements, but some implementation details may prevent
this. See collection-specific documentation for details. In general, use
with_capacity
when you know exactly how many elements will be inserted, or
at least have a reasonable upper-bound on that number.
When anticipating a large influx of elements, the reserve
family of
methods can be used to hint to the collection how much room it should make
for the coming items. As with with_capacity
, the precise behavior of
these methods will be specific to the collection of interest.
For optimal performance, collections will generally avoid shrinking
themselves. If you believe that a collection will not soon contain any more
elements, or just really need the memory, the shrink_to_fit
method prompts
the collection to shrink the backing array to the minimum size capable of
holding its elements.
Finally, if ever you’re interested in what the actual capacity of the
collection is, most collections provide a capacity
method to query this
information on demand. This can be useful for debugging purposes, or for
use with the reserve
methods.
Iterators
Iterators are a powerful and robust mechanism used throughout Rust’s
standard libraries. Iterators provide a sequence of values in a generic,
safe, efficient and convenient way. The contents of an iterator are usually
lazily evaluated, so that only the values that are actually needed are
ever actually produced, and no allocation need be done to temporarily store
them. Iterators are primarily consumed using a for
loop, although many
functions also take iterators where a collection or sequence of values is
desired.
All of the standard collections provide several iterators for performing
bulk manipulation of their contents. The three primary iterators almost
every collection should provide are iter
, iter_mut
, and into_iter
.
Some of these are not provided on collections where it would be unsound or
unreasonable to provide them.
iter
provides an iterator of immutable references to all the contents of a
collection in the most “natural” order. For sequence collections like Vec
,
this means the items will be yielded in increasing order of index starting
at 0. For ordered collections like BTreeMap
, this means that the items
will be yielded in sorted order. For unordered collections like HashMap
,
the items will be yielded in whatever order the internal representation made
most convenient. This is great for reading through all the contents of the
collection.
let vec = vec![1, 2, 3, 4]; for x in vec.iter() { println!("vec contained {}", x); }
iter_mut
provides an iterator of mutable references in the same order as
iter
. This is great for mutating all the contents of the collection.
let mut vec = vec![1, 2, 3, 4]; for x in vec.iter_mut() { *x += 1; }
into_iter
transforms the actual collection into an iterator over its
contents by-value. This is great when the collection itself is no longer
needed, and the values are needed elsewhere. Using extend
with into_iter
is the main way that contents of one collection are moved into another.
extend
automatically calls into_iter
, and takes any T:
IntoIterator
.
Calling collect
on an iterator itself is also a great way to convert one
collection into another. Both of these methods should internally use the
capacity management tools discussed in the previous section to do this as
efficiently as possible.
let mut vec1 = vec![1, 2, 3, 4]; let vec2 = vec![10, 20, 30, 40]; vec1.extend(vec2);
use std::collections::VecDeque; let vec = vec![1, 2, 3, 4]; let buf: VecDeque<_> = vec.into_iter().collect();
Iterators also provide a series of adapter methods for performing common
threads to sequences. Among the adapters are functional favorites like map
,
fold
, skip
and take
. Of particular interest to collections is the
rev
adapter, that reverses any iterator that supports this operation. Most
collections provide reversible iterators as the way to iterate over them in
reverse order.
let vec = vec![1, 2, 3, 4]; for x in vec.iter().rev() { println!("vec contained {}", x); }
Several other collection methods also return iterators to yield a sequence
of results but avoid allocating an entire collection to store the result in.
This provides maximum flexibility as collect
or extend
can be called to
“pipe” the sequence into any collection if desired. Otherwise, the sequence
can be looped over with a for
loop. The iterator can also be discarded
after partial use, preventing the computation of the unused items.
Entries
The entry
API is intended to provide an efficient mechanism for
manipulating the contents of a map conditionally on the presence of a key or
not. The primary motivating use case for this is to provide efficient
accumulator maps. For instance, if one wishes to maintain a count of the
number of times each key has been seen, they will have to perform some
conditional logic on whether this is the first time the key has been seen or
not. Normally, this would require a find
followed by an insert
,
effectively duplicating the search effort on each insertion.
When a user calls map.entry(&key)
, the map will search for the key and
then yield a variant of the Entry
enum.
If a Vacant(entry)
is yielded, then the key was not found. In this case
the only valid operation is to insert
a value into the entry. When this is
done, the vacant entry is consumed and converted into a mutable reference to
the value that was inserted. This allows for further manipulation of the
value beyond the lifetime of the search itself. This is useful if complex
logic needs to be performed on the value regardless of whether the value was
just inserted.
If an Occupied(entry)
is yielded, then the key was found. In this case,
the user has several options: they can get
, insert
or remove
the
value of the occupied entry. Additionally, they can convert the occupied
entry into a mutable reference to its value, providing symmetry to the
vacant insert
case.
Examples
Here are the two primary ways in which entry
is used. First, a simple
example where the logic performed on the values is trivial.
Counting the number of times each character in a string occurs
use std::collections::btree_map::BTreeMap; let mut count = BTreeMap::new(); let message = "she sells sea shells by the sea shore"; for c in message.chars() { *count.entry(c).or_insert(0) += 1; } assert_eq!(count.get(&'s'), Some(&8)); println!("Number of occurrences of each character"); for (char, count) in &count { println!("{}: {}", char, count); }
When the logic to be performed on the value is more complex, we may simply
use the entry
API to ensure that the value is initialized and perform the
logic afterwards.
Tracking the inebriation of customers at a bar
use std::collections::btree_map::BTreeMap; // A client of the bar. They have a blood alcohol level. struct Person { blood_alcohol: f32 } // All the orders made to the bar, by client ID. let orders = vec![1, 2, 1, 2, 3, 4, 1, 2, 2, 3, 4, 1, 1, 1]; // Our clients. let mut blood_alcohol = BTreeMap::new(); for id in orders { // If this is the first time we've seen this customer, initialize them // with no blood alcohol. Otherwise, just retrieve them. let person = blood_alcohol.entry(id).or_insert(Person { blood_alcohol: 0.0 }); // Reduce their blood alcohol level. It takes time to order and drink a beer! person.blood_alcohol *= 0.9; // Check if they're sober enough to have another beer. if person.blood_alcohol > 0.3 { // Too drunk... for now. println!("Sorry {}, I have to cut you off", id); } else { // Have another! person.blood_alcohol += 0.1; } }
Insert and complex keys
If we have a more complex key, calls to insert
will
not update the value of the key. For example:
use std::cmp::Ordering; use std::collections::BTreeMap; use std::hash::{Hash, Hasher}; #[derive(Debug)] struct Foo { a: u32, b: &'static str, } // we will compare `Foo`s by their `a` value only. impl PartialEq for Foo { fn eq(&self, other: &Self) -> bool { self.a == other.a } } impl Eq for Foo {} // we will hash `Foo`s by their `a` value only. impl Hash for Foo { fn hash<H: Hasher>(&self, h: &mut H) { self.a.hash(h); } } impl PartialOrd for Foo { fn partial_cmp(&self, other: &Self) -> Option<Ordering> { self.a.partial_cmp(&other.a) } } impl Ord for Foo { fn cmp(&self, other: &Self) -> Ordering { self.a.cmp(&other.a) } } let mut map = BTreeMap::new(); map.insert(Foo { a: 1, b: "baz" }, 99); // We already have a Foo with an a of 1, so this will be updating the value. map.insert(Foo { a: 1, b: "xyz" }, 100); // The value has been updated... assert_eq!(map.values().next().unwrap(), &100); // ...but the key hasn't changed. b is still "baz", not "xyz". assert_eq!(map.keys().next().unwrap().b, "baz");
Modules
binary_heap | A priority queue implemented with a binary heap. |
btree_map | A map based on a B-Tree. |
btree_set | A set based on a B-Tree. |
hash_map | A hash map implemented with quadratic probing and SIMD lookup. |
hash_set | A hash set implemented as a |
linked_list | A doubly-linked list with owned nodes. |
vec_deque | A double-ended queue implemented with a growable ring buffer. |
Structs
BTreeMap | A map based on a B-Tree. |
BTreeSet | A set based on a B-Tree. |
BinaryHeap | A priority queue implemented with a binary heap. |
HashMap | A hash map implemented with quadratic probing and SIMD lookup. |
HashSet | A hash set implemented as a |
LinkedList | A doubly-linked list with owned nodes. |
VecDeque | A double-ended queue implemented with a growable ring buffer. |
Enums
TryReserveError | Experimental The error type for |
Bound | An endpoint of a range of keys. |